基于多源数据及三层模型的小班林型识别
黄健, 吴达胜, 方陆明

Identification of sub-compartment forest type based on multi-source data and three-tier models
HUANG Jian, WU Dasheng, FANG Luming
表6 基于LightGBM-4及3种雷达遥感因子及特征选择方案的建模精度对比
Table 6 Accuracy comparison based on the LightGBM-4 and the three schemes with remote sensing factors and feature selection
林型
forest
type
雷达遥感因子及特征选择方案
radar remote sensing factor and feature selection scheme
方案A
plan A
方案B
plan B
方案C
plan C
用户精度/%
UA
生产者精度/%
PA
用户精度/%
UA
生产者精度/%
PA
用户精度/%
UA
生产者精度/%
PA
山核桃林
Carya cathayensis forest
91.87 92.93 92.32 93.24 92.32 93.05
阔叶混交林
broad-leaved mixed forest
63.36 59.96 62.93 59.79 63.22 58.97
其他硬阔林
other hard broad-leaved forest
60.43 63.00 59.97 63.34 57.97 62.27
杉木林
Cunninghamia lanceolata forest
85.93 81.79 86.28 81.82 86.42 81.47
毛竹林
Phyllosstachys edulis forest
94.86 94.32 94.46 94.19 95.03 93.83
茶树林
Camellia sinensis forest
92.27 92.27 92.76 93.03 92.15 93.31
马尾松林
Pinus massoniana forest
69.77 75.51 69.94 75.79 69.14 75.86
总体精度/% OA 83.08 83.21 82.91
Kappa系数 0.80 0.80 0.80