我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

质谱技术在蛋白质组学研究中的应用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2011年01期
Page:
103-108
Column:
综合述评
publishdate:
2011-01-01

Article Info:/Info

Title:
Application of mass spectrometry in proteomics studies
Author(s):
ZHEN Yan SHI Jisen
Application of mass spectrometry in proteomics studiesZHEN Yan, SHI Jisen*(Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
mass spectrometry proteomics quantitative proteomics posttranslation modification targeted proteomics functional proteomics
Classification number :
Q81
DOI:
10.3969/j.jssn.1000-2006.2011.01.024
Document Code:
A
Abstract:
With the rapid development of proteomics, mass spectrometry is maturing to be a powerful tool and core technology for proteomics studies during the recent years. The superiority of mass spectrometry lies in providing the throughput and the molecular information, which no other technology can be matched in proteomics. In this review, we made a glance on the outline of mass spectrometrybased proteomics. And then we addressed on the advances of data analysis of mass spectrometrybased proteomics, quantitative mass spectrometrybased proteomics, posttranslational modifications based mass spectrometry, targeted proteomics and functional proteomics basedmass spectrometry.

References

[1] Cho A, Normile D. Nobel prize in chemistry:Mastering macromolecules [J]. Science, 2002(298): 527-528.
[2]Bachi A, Bonaldi T. Quantitative proteomics as a new piece of the systems biology puzzle [J]. Journal of Proteomics, 2008, 71(3): 357-367.
[3]Beretta L. Proteomics from the clinical perspective: many hopes and much debate [J]. Nature Methods, 2007(4): 785-786.
[4]Nilsson T, Mann M, Aebersold R, et al. Mass spectrometry in highthroughput proteomics: ready for the big time [J]. Nature Methods, 2010(7): 681-685.
[5]Cox J, Mann M. Is proteomics the new genomics? [J]. Cell, 2007, 130(3): 395-398.
[6]Yan W, Chen S S. Mass spectrometrybased quantitative proteomic profiling [J]. Briefings in Functional Genomics & Proteomics, 2005, 4(1): 27-38.
[7] Zhu W, Smith J W, Huang C M. Mass spectrometrybased labelfree quantitative proteomics [J/OL]. Journal of Biomedicine and Biotechnology, 2010
[2009-11-20].http:∥www.hindawi:com/journeds/jbb/2010/840518.html.
[8] Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics [J]. Molecular & Cellular Proteomics, 2002(1): 376-386.
[9]张鹏飞. 基于生物质谱的定量蛋白质组学分析策略 [J]. 国外医学:生理、病理科学与临床分册, 2004, 24(4):389-392.
[10]Aggarwal K, Choe L H, Lee K H. Shotgun proteomics using the iTRAQ isobaric tags [J]. Briefings in Functional Genomics and Proteomics, 2006, 5(2): 112-120.
[11]孙瑞祥,付岩,李德泉,等. 基于质谱技术的计算蛋白质组学研究 [J]. 中国科学:E辑 信息科学, 2006, 36(2): 222-234.
[12]Li X J, Yi E C, Kemp C J, et al. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatographymass spectrometry [J]. Molecular & Cellular Proteomics, 2005(4): 1328-1340.
[13] Griffin N M, Yu J, Long F, et al. Labelfree, normalized quantification of complex mass spectrometry data for proteomic analysis [J]. Nature Biotechnology, 2010, 28: 83-89.
[14]Witze E S, Old W M, Resing K A, et al. Mapping protein posttranslational modifications with mass spectrometry [J]. Nature Methods, 2007,4(10): 798-806.
[15]Zolnierowicz S, Bollen M. Protein phosphorylation and protein phosphatases De Panne, Belgium, September 19—24, 1999 [J]. The EMBO Journal, 2000, 19: 483-488.
[16] Amankwa L N, Harder K, Jirik F, et al. Highsensitivity determination of tyrosinephosphorylated peptides by online enzyme reactor and electrospray ionization mass spectrometry [J]. Protein Science, 1995(4): 113-125.
[17]Kalume D E, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies [J]. Current Opinion in Chemical Biology, 2003,7(1): 64-69.
[18]Ficarro S B, McCleland M L, Stukenberg P T, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae [J]. Nature Biotechnology, 2002, 20(3): 301-305.
[19]Garcia B A, Shabanowitz J, and Hunt D F. Characterization of histones and their posttranslational modifications by mass spectrometry [J]. Current Opinion in Chemical Biology, 2007, 11(1): 66-73.
[20]Kim S C, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey [J]. Molecular Cell, 2006, 23(4): 607-618.
[21]谭锋维, 陆丽芳, 王晖, 等. 泛素及其类似物的蛋白质组学研究进展 [J]. 基础医学与临床, 2007, 27(1): 8-15.
[22]Peng J, Schwart D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination [J]. Nature Biotechnology, 2003, 21(8): 921-926.
[23]Denison C, Kirkpatrick D S, Gygi S P. Proteomic insights into ubiquitin and ubiquitinlike proteins [J]. Current Opinion in Chemical Biology, 2005, 9(1): 69-75.
[24] Doerr A. Targeted proteomics [J]. Nature Methods, 2010,7: 34.
[25]Deutsch E W, Lam H, Aebersold R. Peptide Atlas: a resource for target selection for emerging targeted proteomics workflows [J]. EMBO Reports, 2008(9): 429-434.
[26] Picotti P, Bodenmiller B, Mueller L N, et al. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics [J]. Cell, 2009, 138(4): 795-806.
[27]Mitchell P. Proteomics retrenches [J]. Nature Biotechnology, 2010, 28: 665-670.
[28] Picotti P, Rinner O, Stallmach R, et al. Highthroughput generation of selected reactionmonitoring assays for proteins and proteomes [J]. Nature Methods, 2009,7: 43-46.
[29]Zhang H, Yan W, Aebersold R. Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes [J]. Current Opinion in Chemical Biology, 2004, 8(1): 66-75.
[30]Mann M, Jensen O N. Proteomic analysis of posttranslational modifications. [J]. Nature Biotechnology, 2003, 21(3): 255-261.
[31]Kcher T, SupertiFurga G. Mass spectrometrybased functional proteomics: from molecular machines to protein networks[J]. Nature Methods, 2007, 4: 807-815.
[32]Gavin A C, Bsche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes [J]. Nature, 2002, 415: 141-147.
[33]Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry [J]. Nature, 2002, 415: 180-183.
[34]Nesvizhskii A I, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry [J]. Nature Methods, 2007, 4(10): 787-797.
[35]Mann M, Wilm M. Errortolerant identification of peptides in sequence databases by peptide sequence tags [J]. Analytical Chemistry, 1994, 66: 4390-4399.
[36]Frank A, Tanner S, Bafna V, et al. Peptide sequence tags for fast database search in massspectrometry[J]. Journal of proteome Research, 2005, 4(4): 1287-1295.
[37]Tabb D L, Saraf A, Yates J R. GutenTag: highthroughput sequence tagging via an empirically derived fragmentation model [J]. Analytical Chemistry, 2003(75): 6415-6421.
[38]Liu C, Yan B, Song Y, et al. Peptide sequence tagbased blind identification of posttranslational modifications with point process model [J]. Bioinformatics, 2006, 22(14):307-313.

Last Update: 2011-01-14