我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

土壤铅胁迫下4种北方阔叶树种苗木的生长反应及抗性比较(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2011年04期
Page:
143-146
Column:
研究简报
publishdate:
2011-07-31

Article Info:/Info

Title:
Comparison on characters of lead stress resistance of four northern broadleaved tree species
Author(s):
LI Yacang1 WANG Qingcheng2
1.Anyang Institute of Technology, Anyang 455000,China;2.College of Material Science and Engineering, Northeast Forestry University,Harbin 150040,China
Keywords:
Acer ginnala Pyrus ussuriensis Acer mono Malus baccata soil lead contamination resistance
Classification number :
S723
DOI:
10.3969/j.jssn.1000-2006.2011.04.030
Document Code:
A
Abstract:
In this paper,the gradient of soil Pb concentration (CK,100,500,1 000,2 000 mg/kg) was established by mixing Pb(CH3COOH)2 with soil and sand. The growth responses and resistance of four northern broadleaved tree species Acer ginnala,Pyrus ussuriensis,A. mono and Malus baccata to soil lead contamination were studied by growing their seedlings in pots in greenhouse.The results indicated that the seedling growth of all test species was enhanced under lower Pb concentrations (<500 mg/kg),including seedling height, ground diameter,leaf blade and the amount of new branches. With the increasing of Pb concentration, the growth became declined.Soil lead prevented the root system’s growth of most species.The changes of every index and difference between species were obvious. According to comprehensive analysis of above indices by using membership function,we could arrive at a conclusion that the P. ussuriensis had the strongest resistance of soil lead contamination,and next was A. ginnala, M. baccata, A. mono. Under the highest Pb concentration(2 000 mg/kg) the root of plant had the strongest enrichment of Pb,and the following was stem,leaf blade. P. ussuriensis had the stronger enrichment of soil lead than other three species.

References

[1]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(3):71-76.

[2]赵志新,乔瑞芳,季孔庶.杂交鹅掌楸不同无性系对Pb胁迫的生理响应及抗性比较[J]. 植物资源与环境学报,2007,16(4):7-12.

[3]李寒娥,李秉涛,蓝盛芳.行道树对城市道路交通环境的响应研究[J].应用与环境生物学报, 2005, 11(4): 435-439.
[4]陈立新,赵淑苹,段文标.哈尔滨市不同绿地功能区土壤重金属污染及评价[J].林业科学,2007,43(1):65-71.
[5]刘维涛,周启星,孙约兵,等.大白菜对铅积累与转运的品种差异研究[J].中国环境科学,2009,29(1):63-67.
[6]石汝杰,陆引罡.4种草本植物对重金属铅的耐性研究[J].贵州农业科学,2009,37(7):51-53.
[7]李亚藏,王庆成,马树华. 四种北方阔叶树种苗木对土壤镉胁迫的生长反应与抗性比较[J].应用生态学报,2005,16(4):655-659.
[8]王小鸽,张文辉,何景峰,等.3个瑞典能源柳无性系对铅污染耐受性研究[J].西北植物学报,2009,29(7):1400-1407.
[9]Chamberlain A C. Fall out of lead and uptake by crops[J].Atmos Environ,1983,17(4):693-706.
[10]张晓雯,陈世华. 铅胁迫对绿豆种子萌发及幼苗生长的影响[J].安徽农业科学, 2008,36 (34):14859,14882.
[11]Patra J,Ienka M,Panda B B. Tolerance and cotolerance of the grass Chloris barbata SW, to mercury, cadmium and zinc[J]. New Phytol, 1994,128:165-171.
[12]张文辉,段宝利,周建云,等.不同种源栓皮栎幼苗水分适应及耐旱特性比较研究[J].西北植物学报,2003,23(5):728-734.
[13]马利民,陈 玲,马娜,等.几种花卉植物对污泥中铅的富集特征[J].生态学杂志,2005,24(6):644-647
[14]蒋德明,黄会一,张春兴,等.木本植物对土壤镉污染物吸收蓄积能力及其种间差异[J].城市环境与城市生态,1992,5(1):27-29.
[15]苏玲,章永松,林咸永,等.维管植物的镉毒和耐性机制[J].植物营养与肥料学报,2000,6(1):106-112.
[16]杨居荣.镉铅在植物细胞内的分布及可溶性结合形态[J].中国环境科学,1993,13(4):325-331.
[17]Rauser W E. Phytochelations and related peptides:structure, biosynthesis and function[J]. Plant Physiol, 1995,109(4):1141-1149.
[18]Prasad M N V. Cadmium toxicity and tolerance in vascular paints[J]. Envir Exper Botany, 1995,35 (4): 525-545.
[19]张福锁.环境胁迫与根际营养[M].北京:中国农业出版社,1998.
[20]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.

Last Update: 2011-08-13