我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

苔藓和地衣对环境变化的响应和指示作用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2012年03期
Page:
137-143
Column:
综合述评
publishdate:
2012-05-30

Article Info:/Info

Title:
Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change
Author(s):
YANG Linlu WANG Zhongsheng* ZHOU Lingyan MA Yuansheng WANG Zhike YING Ting SONG Yuanyuan XU Weixiang
College of Life Sciences, Nanjing University, Nanjing 210093, China
Keywords:
cryptogamae bryophyte lichen environmental change biomonitoring
Classification number :
S718
DOI:
10.3969/j.jssn.1000-2006.2012.03.028
Document Code:
A
Abstract:
Non-vascular cryptogams, particularly bryophytes and lichens have been an important tool in the research of response and indicator to the global change because they are found in various habitats, their distributions as individual/population/community are stable on a small-scale, and they are sensitive to environmental changes. The monitoring indices includes:(1)biomass of the species, abundance and diversity index of species;(2)correlation between certain element accumulation level within individual plant and the content of the element in the environment;(3)environment-induced changes in cell metabolic rate, photosynthetic rate and pigment content, and enzyme activities and concentrations;(4)integrated correlations between environmental factors and eco-physiological variables of monitored species and established monitoring models. However, responses of different species to environment changes were different. Research is needed in choosing suitable species for biomonitoring and the corresponding criteria, as well as in establishing reliable “specific pollutant-specific monitoring species-monitoring index” system.

References

[1] Nancy B, Grimm, Stanley H Faeth, et al. Global change and the ecology of cities[J]. Science, 2008, 319:756.
[2] Tilmes S. Quantitative estimation of surface ozone observation and forecast errors[J]. Phys Chem Earth, 2001, 26(10):759-762.
[3] Batizas F A, Siontorou C G. A knowledge-based approach to environmental biomonitoring[J]. Environ Monit Assess, 2006, 126:123-134.
[4] Bates J W. Mineral nutrition, substratum ecology, and pollution.[C]//Shaw A J, Goffinet. Bryophyte Biology. Cambridge:Cambridge University Press, 2000.
[5] 吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998.
[6] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70:153-226
[7] Stulen I, Perez-soba M. Impact of gaseous nitrogen deposition on plant functioning[J]. New Phytol, 1998, 139:61-70.
[8] Zechmeister H G, Grodzinska K, Szarek-Lukaszewska G. Bryophytes[C]// Markert B A, Breure A M, Zechmeister H G. Bioindicators. Amsterdam: Elsevier, 2003.
[9] Koranda M, Kerschbaum S. Physiological responses of bryophytes Thuidium splendens to increased nitrogen deposition[J]. Annals of Botany, 2007, 99:161-169.
[10] Pearce I S K, Woodin S J, van der Wal R. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition[J]. New Phytologist, 2003, 160:145-155.
[11] Mara Arr niz-Crespo, Jonathan R Leake. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilization in acidic grassland[J]. New Phytologist, 2008,180:864-874.
[12] 刘滨扬,刘蔚秋,雷纯义,等.三种苔藓植物对模拟N沉降的生理响应[J].植物生态学报,2009,33(1):141-149.
[13] Pitcairn C, Fowler D, Leith I, et al. Bioindicators of enhanced nitrogen deposition[J]. Environmental Pollution, 2003, 126:353-361.
[14] Sloga A, Burkhardt J, Zechneister H G, et al. Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi(brid).2005 In relation to atmospheric nitrogen deposition[J]. Enviromental Pollution, 2005, 134:465-473.
[15] 刘学炎,肖化云,刘丛强,等.石生苔藓氮含量和氮同位素指示贵阳地区大气氮沉降的空间变化和来源[J].环境科学,2008,29(7):1785-1790.
[16] Paulissen M P C P, Besalu L E, De Bruijn H, et al. Contrasting effects of ammonium enrichment on fen bryophytes[J]. Journal of Bryology, 2005, 27:109-117.
[17] Wolseley P A, James P W, Theobald M R, et al. Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources[J]. Lichenologist, 2006, 38:161-176.
[18] Wolseley Pat A, Larsen Vilsholm Ren. Biomonitoring with lichens on twigs[J]. The Lichenologist, 2009, 41(2):189-202.
[19] Wilson W D, Stock. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the cape metropolitan area, south Africa[J]. Enviornmental Pollution, 2009, 157: 938-945.
[20] NOAA. Untied States temperature and precipitation trends[R/OL]. National Oceanic and Atmospheric Administration Climate Prediction Center. 2005.
[2011-08-07].http://www.cpc.ncep.noaa.gov/charts.shtml.
[21] Jauhianinen J, Silvola J. Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations[J]. Ann Bot Fenn, 1999, 36(1):11-19.
[22] Van der Heijden E, Janhiainen J, Vasander H, et al. Effects of raised atmospheric CO2 and increased nitrogen deposition on growth and chemical composition of two Sphagnum species[J]. Journal of Bryology, 2000, 22(3):175-182.
[23] Heijmans M M P D, Berendse F, Arp W J, et al. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands[J]. Journal of Ecology, 2001, 89: 268-279.
[24] Mitchell E A D, Butler A. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change[J]. Journal of Ecology, 2002, 90: 529-533.
[25] Gignac L Dennis, Barbara J Nicholson, Suzanne E Bayley. The utilization of bryophytes in bioclimatic modeling: predicted northward migration of peatlands in the Mackenzie River basin, Cananda, as a result of global warming[J]. The Bryologist, 1998, 101:572-587.
[26] Van Herk C M, Aptroot A, Van Dobben H F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming[J]. Lichenologist, 2002, 34:141-154.
[27] Quested H M, Cornelissen J H C, Press M C, et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites[J]. Ecology, 2003, 84:3209-3221.
[28] Simone l Lang. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species[J]. Journal of Ecology, 2009, 97:886-900.
[29] Weltzin J F, Harth C, Scott D Bridgham, et al. Production and microtopography of bog bryophytes: response to warming and water-table manipulations[J]. Oecologia, 2001, 128(4):557-565.
[30] Richardson D H S, Nieboer E. Ecophysiological responses of lichens to sulfur dioxide[J]. J Hattori Bot Lab, 1983, 54:331-351.
[31] Nash T H, Gries C. Lichens as bioindactors of sulfur dioxide[J]. Symbiosis, 2002, 33:1-21.
[32] Kashulina G, Reimann C. Sulphur in the arctic environment(2): results of multi-medium regional mapping[J]. Environmental Pollution, 2002, 116:337-350.
[33] Stapper N J, Kricke R. Epiphytische moose und flechten als Bioindikatoren von st dtischer berw mung, Standortseutrophierung und verkehrsbedingten Immissionen[J]. Limprichtia, 2004, 24:187-208.
[34] Stephenson S L, Studlar S M, Mcquattie C J. Plant and environment interaction: Effects of acidification on bryophyte communities in West Virgina: Mountain steams[J]. Journal of Environmental Quality, 1995, 24(1):116-125.
[35] 陈威,何丙辉.重庆马尾松林下苔藓植物对酸雨的指示意义初步研究[D].重庆:西南大学,2008.
[36] Richardson D H S. Pollution Monitoring with Lichens[M]. U K:Richmond Slough, 1992.
[37] Crist R H, Martin J R, Chenko J, et al. Uptake of metals on peat moss: An ion-exchange process[J]. Environ Sci Tech, 1996, 30:24-56.
[38] Marz Dazy, Jean-Fran ois Masfaraud, Jean-Fan ois Férard. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw[J]. Chemosphere, 2009, 75:297-302.
[39] 张光飞,段仲昭,罗晓娟,等.2种苔藓的叶绿素荧光特性及耐受性对Pb2+浓度的响应[J].环境污染与防治,2011,33(1):36-40.
[40] Markert B, Herpinb U. A comparison of heavy metal deposition in select Eastern countries using the moss monitoring method, with special emphasis on the ‘Black Triangle’[J]. Sci Total Environ, 1996, 193:85-100.
[41] Michal hejcman, Ji ina Száková. The rengen grassland experiment,bryophytes biomass and element concentrations after 65 years of fertilizer application[J]. Environ Monit Assess, 2009, 166:653-652.
[42] ke Rühling. A European survey of atmospheric heavy metal deposition in 2000-2001[J]. Environmental Pollution, 2002, 120:23-25.
[43] Majumadar S, Ram S S, Jana N K, et al. Accumulation of minor and trace elements in lichens in and around Kolkata, India: an application of X-ray fluorescence technique to air pollution monitoring[J]. X-ray Spectrometry, 2009,38(6):469-473.
[44] Maurizio Guidotti, Daniela Stella. Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudovernia furfuracea[J]. Bull Environ Contam Toxicol, 2009, 83:852-858.
[45] W H O. Dioxins and their effects on human health[J/OL]. Word Health Organization, 2007(225).
[2011-08-20]. http://www.who.int/inf-fs/en/fact225.html.
[46] Augusto Sofia, Cristina M Guas, Cristina Branquinho. Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration[J]. Ecotoxicology, 2009, 18:1036-1042.
[47] Samecka-Cymerman, Kolon A, Kempers K. A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitors of water polluted with heavy metals[J]. Sci Total Environ, 2005, 341:97-107.
[48] Hongve D, Brittain J E. Aquatic mosses as a monitoring tool for 137/Cs contaminating in streams and rivers-a field study from central southern Norway[J]. Journal of Environmental Radioactivity, 2002, 60:139-147.
[49] Van der Poorten V, Palm R. Compared regression methods for inferring ammonium nitrogen concentrations in running freshwaters from aquatic bryophyte assemblages[J]. Hydrobiologia, 2001, 452:181-190.
[50] Lücking R, Bernecker-Lücking A. Dirp-tips do not impair the development of epiphyllous rain-forest lichen communities[J]. Journal of Tropical Ecology, 2005, 21:171-177.
[51] 周灵燕,王中生,陈姝凝,等.叶附生生物生态学研究进展[J].植物生态学报,2009,33(5):993-1002.
[52] Wanck W, Portl K. Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understory of a lowland tropical wet forest in Costa Rica[J]. New Phytologist, 2005, 166: 577-588.
[53] Li Xinrong. Influence of variation of soil spatial heterogeneity on vegetation restoration[J]. Science in China: Earth Sciences, 2005, 48:2020-2031.

Last Update: 2012-05-30