我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

拟南芥、水稻和毛果杨中CesA基因的进化和表达分析(PDF/HTML)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年03期
Page:
11-16
Column:
研究论文
publishdate:
2013-05-20

Article Info:/Info

Title:
Phylogenetic and expression analysis of CesA genes in Arabidopsis thaliana, Oryza sativa and Populus trichocarpa
Author(s):
ZHU Yu TAN Mengyue ZOU Ailan ZHANG Wenju QI Jinliang YANG Yonghua*
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, NJU-NJFU Plant Molecular Biology Institute, Nanjing University, Nanjing 210093,China
Keywords:
Arabidopsis thaliana Oryza sativa Populus trichocarpa CesA phylogenetic tree gene expression
Classification number :
Q756
DOI:
10.3969/j.issn.1000-2006.2013.03.003
Document Code:
-
Abstract:
Cellulose is the main component of plant cell walls, and the cellulose synthase encoded by CesA gene is the most important enzyme involved in cellulose biosynthesis. In this study, genome sequence of three model plant species(Arabidopsis thaliana, Oryza sativa, Populus trichocarpa)had been utilized to investigate the phylogenetic relationship of the CesA gene family. The results showed that CesA genes had already existed before species differentiation and that gene expansion occurred after species differentiation. There was a variation in the degree of gene expansion among different species and the entire gene family showed negative selection pressure. To further demonstrate the expression regulation patterns of CesA genes, the promoters of OsCesAs were analyzed and the results suggest that OsCesA genes might be regulated by various stresses and hormones. RT-PCR results indicated that some OsCesAs were down-regulated by abscisic acid.

References

[1] Tanaka K, Murata K, Yamazaki M, et al. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J]. Plant Physiol, 2003, 133(1):73-83.
[2] Richmond T A, Somerville C R. The cellulose synthase superfamily[J]. Plant Physiol, 2000, 124(2):495-498.
[3] Festucci-Buselli R A, Otoni W C, Joshi C P. Structure, organization, and functions of cellulose synthase complexes in higher plants[J]. Braz J Plant Physiol, 2007, 19(1):1-13.
[4] Wang L, Guo K, Li Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010, 282:1-16.
[5] Doblin M S, Kurek I, Jacob-Wilk D, et al. Cellulose biosynthesis in plants: from genes to rosettes[J]. Plant Cell Physiol, 2002, 43(12):1407-1420.
[6] Holland N, Holland D, Helentjaris T, et al. A comparative analysis of the plant cellulose synthase(CesA)gene family[J]. Plant Physiol, 2000, 123(4):1313-1323.
[7] Goff S A. A draft sequence of the rice genome[J]. Science, 2002, 5565:92-100.
[8] Tuskan G A, DiFazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa[J]. Science, 2006, 5793:1596-1604.
[9] Chen M, Presting G, Barbazuk W B, et al. An integrated physical and genetic map of the rice genome[J]. Plant Cell, 2002, 14(3):537-545.
[10] Whalley W R, Bengough A G, Dexter A R. Water stress induced by PEG decreases the maximum growth pressure of the roots of pea seedlings[J]. J Exp Bot, 1998, 49(327):1689-1694.
[11] Gu X, Velden K V. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family[J]. Bioinformatics, 2002, 18(3):500-501.
[12] Gu X. Functional divergence in protein(family)sequence evolution[J]. Genetica, 2003, 118(2):133-141.
[13] Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood[J]. Mol Biol Evol, 2007, 24(8):1586-1591.
[14] Sawyer S. Statistical tests for detecting gene conversion[J]. Mol Biol Evol, 1989, 6(5):526-538.
[15] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases[J]. Proc Natl Acad Sci USA, 1979, 76(10):5269-5273.
[16] Mondragón-Palomino M, Meyers B C, Michelmore R W, et al. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana[J]. Genome Res, 2002, 12(9):1305-1315.
[17] Wortman J R, Haas B J, Hannick L I, et al. Annotation of the Arabidopsis genome[J]. Plant Physiol, 2003, 132(2):461-468.
[18] Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression[J]. Plant Cell, 1997, 9(10):1859-1868.
[19] Narusaka Y, Nakashima K, Shinwari Z K, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA dependent expression of Arabidopsis gene in response to dehydration and high-salinity stresses[J]. Plant J, 2003, 34(2):137-148.
[20] Djerbi S, Lindskog M, Arvestad L. The genome sequence of black cottonwood(Populus trichocarpa)reveals 18 conserved cellulose synthase(CesA)genes[J]. Planta, 2005, 221(5):739-746.
[21] Richmond T. Higher plant cellulose synthases[J]. Genome Biol, 2000, 1(4):3001-3006.
[22] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50(1):571-599.
[23] Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc Natl Acad Sci USA, 2007, 104(52):21002-21007.
[24] Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4):751-763.
[25] Chen Z, Hong X, Zhang H, et al. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis[J]. Plant J, 2005, 43(2):273-283.

Last Update: 2013-05-31