我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

两种枸杞对NaHCO3胁迫的抗性生理响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年06期
Page:
165-169
Column:
研究简报
publishdate:
2014-12-09

Article Info:/Info

Title:
Resistance physiological responses of two species of Lycium to NaHCO3 stress
Article ID:
1000-2006(2014)06-0165-05
Author(s):
LIU Qiang WANG Zhanwu ZHOU Xiaomei*
School of Life Sciences, Jilin Normal University, Siping 136000, China
Keywords:
Lycium NaHCO3 stress osmotic regulation antioxidant system physiological response
Classification number :
Q945.1
DOI:
10.3969/j.issn.1000-2006.2014.06.031
Document Code:
A
Abstract:
In order to explore the tolerant mechanism of two species of Lycium to NaHCO3 stress, the responses of osmotic regulation and antioxidant systems to NaHCO3 stress in Lycium dasystemum and Lycium chinense were investigated by determining the dry weight, the electrolyte leakage, the contents of malondialdehyde(MDA), H2O2, proline, Na+ and K+ as well as the activities of antioxidant enzymes like superoxide dismutase(SOD), catalase(CAT), peroxidase(POD), ascorbate peroxidase(APX)and glutathione reductase(GR). The results showed that growth of two Lycium species were improved under lower stress intensity as compared to that of control. The contents of Na+ and proline in leaves increased with the stress intensity increasing, while that of K+ decreased. The less oxidative damage of Lycium dasystemum was associated with lower MDA content, electrolyte leakage, and H2O2 concentration. With the increasing stress intensity, the activity of SOD increased, while that of CAT decreased gradually. The activities of APX and GR changed identically, which increased under lower NaHCO3 stress, and then began to decrease under severer NaHCO3 stress. These results presented that Lycium dasystemum exhibited a better protection mechanism against oxidative damage and it was more salt-tolerant than Lycium chinense possibly by maintaining better capability in osmotic regulation and a more effective antioxidant defense system.

References

[1] Tarchoune l, Sgherri C, lzzo R, et al. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization[J].Plant Physiol Bioch, 2010, 48:772-777.
[2] Shi D C, Yin L J. Difference between salt(NaCl)and alkaline(Na2CO3)stresses on Puccinellia tenuiflora( Griseb. )[J]. Acta Bot Sin, 1993, 35:144-149.
[3] Sarkar A N, Wynjones R G. Effect of rhizosphere pH on the availability and uptake of Fe, Mn and Zn[J]. Plant and Soil, 1982, 66: 361-372.
[4] 曲元刚,赵可夫.NaCl和Na2CO3对盐地碱蓬胁迫效应的比较[J].植物生理与分子生物学学报,2003, 29( 5):387-394. Qu Y G, Zhao K F. Comparison of the stress effects of NaCl and Na2CO3 on Suaeda salsa L[J]. Acta Photophysiologica Sinica, 2003, 29( 5):387-394.
[5] 王臣,虞木奎,王宗星,等. 9个揪树无性系对盐胁迫的差异响应[J]. 南京林业大学学报:自然科学版, 2011, 35(2): 20-24. Wang C, Yu M K, Wang Z X, et al. Difference of response to salt stress of nine clones of Catalpa bungei[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2011, 35(2):20-24.
[6] Turkan I, Demiral T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot, 2009, 67:2-9.
[7] Flowers T J, Colmer T D. Salinity tolerance in halophytes[J]. New Phytol, 2008, 179:945-963.
[8] Amor N B, Hamed K B, Debez A, et al. Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity[J]. Plant Sci, 2005, 168:889-899.
[9] 程淑娟,唐东芹,刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报:自然科学版, 2013, 37(1): 137-141. Cheng S J, Tang D Q, Liu Q L. Reactive oxygen species homeostasis of two Lohicera species under salt stress[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2013, 37(1): 137-141.
[10] Sekmen A H, Turkan I, Takio S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritime and salt-sensitive Plantago media[J]. Physiol Plant, 2007, 131:399-411.
[11] 赵可夫,李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999.
[12] 贾韶千,吴彩娥,杨剑婷,等. 枸杞中黄酮类化合物纯化工艺的研究[J]. 南京林业大学学报:自然科学版, 2010, 34(2):85-88. Jia S Q, Wu C E, Yang J T, et al. Purification process of total flavonoids in Lycium barbarum L.[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2010, 34(2):85-88.
[13] 王龙强,蔺海明,肖雯,等. 盐地宁夏枸杞生理生化指标及抗盐特性研究[J]. 甘肃农业大学学报, 2004, 39(6):611-614. Wang L Q, Lin H M, Xiao W, et al.Physio-biochemistry indexes relative to salt-tolerance of Lycium barbarum in salinized land[J]. Journal of Gansu Agricultural University, 2004, 39(6):611-614.
[14] 刘景巍,吴涛,侯杰. 枸杞种间种子萌发期间耐盐性比较研究[J]. 安徽农业科学, 2013, 41(22):9233-9234. Liu J W, Wu T, Hou J. Comparative study of salt tolerance of Lycium chiueuse Mill. in seed germination stage[J]. Journal of Anhui Agri Sci, 2013, 41(22):9233-9234.
[15] Utriainen J, Holopainen T. Influence of nitrogen and phosphorus availability and ozone stress on Norway spruce seedlings[J]. Tree Physiology, 2001, 21: 447-456.
[16] 王宝山, 赵可夫. 小麦叶片中Na+、K+提取方法的比较[J]. 植物生理学通讯, 1995, 31(1):50-52. Wang B S, Zhao K F.Comparison of extractive methods of Na+ and K+ in wheat leaves[J]. Plant Physiology Communications, 1995, 31(1):50-52.
[17] 邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.
[18] 李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版, 2000.
[19] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002.
[20] Nakano Y, Asadas K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22: 867-880.
[21] Chaparzadeh N, D'Amico M L, Khavari-Nejad R A, et al. Antioxidative responses of Calendula officinalis under salinity conditions[J]. Plant Physiol Biochem, 2004, 42: 695-701.
[22] Glenn E, Pfister R, Browen J,et al. Na and K accumulation and salt tolerance of Atriplex canescens(Chenopodiaceae)genotype[J]. Am J Bot, 1996, 83:997-1005.
[23] Surówka E, Karolewski P, Niewiadomska E, et al.Antioxidative response of Mesembryanthemum crystallinum plants to exogenous SO2 application[J]. Plant Science, 2007, 172: 76-84.

Last Update: 2014-12-31