我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

蛋白质组学研究中磷酸化蛋白质(肽)富集策略及展望(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年01期
Page:
149-154
Column:
综合述评
publishdate:
2015-01-30

Article Info:/Info

Title:
Enrichment strategies and prospects of phosphoprotein(phosphopetide)in phosphoproteomics
Article ID:
1000-2006(2015)01-0149-06
Author(s):
ZHEN Yan LI Chunying LU Ye SHI Jisen*
Key Laboratory of Forest Genetics &
Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
Keywords:
phosphoproteomic phosphoprotein phosphopetide enrichment strategies
Classification number :
TQ937
DOI:
10.3969/j.issn.1000-2006.2015.01.027
Document Code:
A
Abstract:
Protein phosphorylation is an important regulation way in cellular signaling pathways. However, it was difficult to study on phosphoprotein/phosphopetide because of the low abundances, low stoichiometry, and easily to degrade in biological environment. The ideal sample preparation was one of the key steps for protein phosphorylation research. The strategy of phosphoprotein/phosphopetide enrichment with antibody, biotin-tagging approach, phosphopetide enrichment with immobilized metal affinity chromatography, metal oxide affinity chromatography, sequential elution from IMAC, ion exchange chromatography, and the hydrophilic interaction liquid chromatography were discussed in this review, respectively. The importance and application of the phosphorylated proteins/peptides enrichment strategy had been proposed for the further study on regulating factors during cellular signaling transduction pathways.

References

[1] Tichy A, Salovska B, Rehulka P, et al. Phosphoproteomics: searching for a needle in a haystack[J]. Journal of Proteomics, 2011, 74(12):2786-2797.
[2] Qu Y, Wu S, Zhao R, Zink E, et al. Automated immobilized metal affinity chromatography system for enrichment of Escherichia coli phosphoproteome[J]. Electrophoresis, 2013, 34(11):1619-1626.
[3] Schroeder M J, Shabanowitz J, Schwartz J C, et al. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry[J]. Analytical Chemistry, 2004, 76(13):3590-3598.
[4] Csar X F, Wilson N J, Strike P, et al. Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells[J]. Proteomics, 2001, 1(3):435-443.
[5] Imamura H, Wakabayashi M, Ishihama Y. Analytical strategies for shotgun phosphoproteomics: status and prospects [J]. Seminars in Cell &Developmental Biology, 2012, 23(8):836-842.
[6] Nuhse T S, Stensballe A, Jensen O N, et al. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry[J]. Molecular & Cellular Proteomics, 2003, 2(11):1234-1243.
[7] Beausoleil S A, Jedrychowski M, Schwartz D, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33):12130-12135.
[8] Thingholm T E, Jensen O N, Larsen M R. Analytical strategies for phosphoproteomics[J]. Proteomics, 2009, 9(6):1451-1468.
[9] Trinidad J C, Specht C G, Thalhammer A, et al. Comprehensive identification of phosphorylation sites in postsynaptic density preparations[J]. Molecular & Cellular Proteomics, 2006, 5(5):914-922.
[10] Hennrich M L, Groenewold V, Kops G J P L, et al. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach[J]. Analytical Chemistry, 2011, 83(18):7137-7143.
[11] Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of chromatography, 1990, 499:177-196.
[12] Nilsson C L. Advances in quantitative phosphoproteomics[J]. Analytical Chemistry, 2012, 84(2):735-746.
[13] McNulty D E, Annan R S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection[J]. Molecular & Cellular Proteomics, 2008, 7(5):971-980
[14] Singer D, Kuhlmann J, Muschket M, et al. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase[J]. Analytical Chemistry, 2010, 82(15):6409-6414.
[15] Boersema P J, Mohammed S, Heck A J R. Hydrophilic interaction liquid chromatography(HILIC)in proteomics[J]. Analytical and Bioanalytical Chemistry, 2008, 391(1):151-159.
[16] Buszewski B, Noga S. Hydrophilic interaction liquid chromatography(HILIC)—a powerful separation technique[J]. Analytical and Bioanalytical Chemistry, 2012,402(1):231-247.
[17] Dunn J D, Reid G E, Bruening M L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry[J]. Mass Spectrometry Reviews, 2010, 29(1):29-54.
[18] Novotna L, Hruby M, Benes M J, et al. Immobilized metal affinity chromatography of phosphorylated proteins using high performance sorbents [J]. Chromatographia, 2008, 68(5-6):381-386.
[19] Barnouin K N, Hart S R, Thompson A J, et al. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol[J]. Proteomics, 2005, 5(17):4376-4388.
[20] Kersten B, Agrawal G K, Durek P, et al. Plant phosphoproteomics: An update[J]. Proteomics, 2009, 9(4):964-988.
[21] Dubrovska A,Souchelnytskyi S. Efficient enrichment of intact phosphorylated proteins by modified immobilizes metal-affinity chromatography [J]. Proteomics, 2005, 5(18):4678-4683.
[22] Kosako H,Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways[J]. Expert Review of Proteomics, 2011, 8(1):81-94.
[23] Zhou H, Ye M, Dong J, et al. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium(IV)ion affinity chromatography[J]. Nature Protocols, 2013, 8(3):461-480.
[24] Larsen M R, Thingholm T E, Jensen O N, et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns [J]. Molecular & Cellular Proteomics, 2005, 4(7):873-886
[25] Richardson B M J, Soderblom E J, Thompson J W, et al. Automated, reproducible, titania-based phosphopeptide enrichment strategy for label-free quantitative phosphoproteomics [J]. Journal of Biomolecular Techniques 2013, 24(1):8-16.
[26] Connor P A. McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study[J]. Langmuir, 1999,15(8): 2916-2921.
[27] Eyrich B, Sickmann A, Zahedi R P. Catch me if you can: Mass spectrometry-based phosphoproteomics and quantification strategies [J]. Proteomics, 2011, 11(4):554-570.
[28] Rosenqvist H, Ye J,Jensen O N. Analytical strategies in mass spectrometry-based phosphoproteomics[J]. Methods in Molecular Biology, 2009, 753:183-213.
[29] Kersten B, Agrawal G K, Iwahashi H, et al. Plant phosphoproteomics: A long road ahead [J]. Proteomics, 2006, 6(20):5517-5528.
[30] Sugiyama N, Masuda T, Shinoda K, et al. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications[J]. Molecular & Cellular Proteomics, 2007, 6(6):1103-1109.
[31] Bodenmiller B, Mueller L N, Mueller M, et al. Reproducible isolation of distinct, overlapping segments of the phosphoproteome[J]. Nature Methods, 2007, 4(3): 231-237.
[32] Jensen S S, Larsen M R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques[J]. Rapid Communications in Mass Spectrometry, 2007, 21(22):3635-3645.
[33] Rosenqvist H, Ye J, Jensen O N. Analytical strategies in mass spectrometry-based phosphoproteomics[C]//Gel-Free Proteomics. New York:Humana Press, 2011: 183-213.
[34] Thingholm T E, Jensen O N, Robinson P J,et al. SIMAC(sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides[J]. Molecular & Cellular Proteomics, 2008, 7(4):661-671.
[35] Thingholm T E, Jensen O N, Larsen M R. Enrichment and separation of mono-and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis [J]. Methods in Molecular Biology, 2009, 527:67-78.
[36] Mamone G, Picariello G, Ferranti P, et al. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono-and multi-phosphorylated peptides in phosphoproteome analysis[J]. Proteomics, 2010, 10(3):380-393.
[37] Pinto G, Caira S, Cuollo M, et al. Hydroxyapatite as a concentrating probe for phosphoproteomic analyses[J]. Journal of Chromatography B, 2010, 878(28):2669-2678.
[38] Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics[J]. Amino Acids, 2012, 43(3):1025-1047.
[39] Shibata M, Yamakawa Y, Ohoka T, et al. Characterization of a 64-kd protein phosphorylated during chemotactic activation with IL-8 and fMLP of human polymorphonuclear leukocytes. II. Purification and amino acid analysis of phosphorylated 64-kd protein[J]. Journal of Leukocyte Biology, 1993, 54(1):10-16.
[40]Salovska B, Tichy A, Rezacova M,et al. Enrichment strategies for phosphoproteomics: state-of-the-art[J]. Reviews in Analytical Chemistry, 2012, 31(1):29-41.
[41] Krenkova J,Foret F. Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment[J]. Analytical and Bioanalytical Chemistry, 2013, 405(7):2175-2183.
[42] Fonslow B R, Niessen S M, Singh M,et al. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT[J]. Journal of Proteome Research, 2012, 11(5): 2697-2709.
[43] Krenkova J, Lacher N A, Svec F. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides[J]. Analytical Chemistry, 2010, 82(19):8335-8341.
[44] Yu Q, Li X S, Yuan B F, et al. Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides[J]. Journal of Separation Science, 2014, 37:580-586.
[45] Rush J, Moritz A, Lee K A, et al. Immuno-affinity profiling of tyrosine phosphorylation in cancer cells[J]. Nature Biotechnology, 2005, 23(1):94-101.
[46] Zhang Y,Wolf-Yadlin A,White F M. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks[J]. Methods in Molecular Biology, 2007, 359:203-212.
[47] Gronborg M, Kristiansen T Z, Stensballe A, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies-Identification of a novel protein, Frigg, as a protein kinase A substrate[J]. Molecular & Cellular Proteomics, 2002, 1(7):517-527.
[48] Mann M, Ong S E, Gronborg M, et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome[J]. Trends in Biotechnology, 2002, 20(6):261-268.
[49] Sopko R, Andrews B J. Linking the kinome and phosphorylome-a comprehensive review of approaches to find kinase targets[J]. Molecular Biosystems, 2008, 4(9):920-933.
[50] López E, López I, Ferreira A, et al. Retracted clinical and technical phosphoproteomic research[J]. Proteome Science, 2011, 9:27.
[51] Tsigankov P, Gherardini P F, Helmer-Citterich M, et al. Phosphoproteomic analysis of differentiating leishmania parasites reveals a unique stage-specific phosphorylation motif[J]. Journal of Proteome Research, 2013, 12(7):3405-3412.
[52] Oda Y, Nagasu T, Chait B T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome[J]. Nature Biotechnology, 2001, 19(4):379-382.
[53] Kwon S J, Choi E Y, Seo J B, et al. Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach[J]. Molecules and Cells, 2007, 24(2):268-275.

Last Update: 2015-01-31