我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于线性混合模型的杉木人工林枝条大小预测模型(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2015年02期
Page:
97-103
Column:
研究论文
publishdate:
2015-04-01

Article Info:/Info

Title:
Analysis of the branch size for Chinese fir plantation using the linear mixed effects model
Article ID:
1000-2006(2015)02-0097-07
Author(s):
XU Hao SUN Yujun* WANG Xinjie GAO Zhixiong DONG Yunfei
College of Forestry, Beijing Forestry University, Beijing 100083, China
Keywords:
Cunninghamia lanceolata branch diameter branch length linear mixed effect model heteroscedasticity
Classification number :
S758
DOI:
10.3969/j.issn.1000-2006.2015.02.017
Document Code:
A
Abstract:
Based on the branch analysis data of 2 598 branches from 40 sample trees of Chinese fir plantation in Jiangle National Forest Farm in Fujian Province. The linear mixed effects(LME)models was used build primary branch size(diameter and length)LME models with the trees effect as the random effect by R language. The results showed that the LME models provide better performance than that of the traditional multiple linear regression models for the branch size prediction of Chinese fir plantation. The LME models with different combinations of the random effects parameters had different fitting precisions, among which the LME model with three random effects parameters provides the best performance. However, the LME models with more than three random effects parameters showed no convergence. The LME models including variance structures could effectively remove the heteroscedasticity in the data, among which the LME model with the power function as the variance structure has better fitting precisions. Model validation confirms that the LME models with the random effect and heteroscedasticity structure could significantly improve the precision of prediction, compared with the traditional regression models.

References

[1] Newton M, Lachenbruch B, Robbins J M, et al. Branch diameter and longevity linked to plantation spacing and rectangularity in young Douglas-fir[J]. Forest Ecology and Management, 2012, 266: 75-82.
[2] Russell M B, Weiskittel A R, Kershaw A. Assessing model performance in forecasting long-term individual tree diameter versus basal area increment for the primary Acadian tree species[J]. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2011, 41(12): 2267-2275.
[3] 符利勇,孙华. 基于混合模型的杉木单木冠幅预测模型[J]. 林业科学,2013,49(8): 65-74.Fu L Y, Sun H. Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models[J]. Scientia Silvae Sinicae, 2013,49(8): 65-74.
[4] 王小明,卢军,李凤日. 北方天然次生林主要阔叶树种树冠建模及应用[J]. 南京林业大学学报:自然科学版, 2012, 36(4): 7-12.Wang X M, Lu J, Li F R.Crown profile simulation of major broad-leaf species of natural secondary forest in north of China[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2012, 36(4): 7-12.
[5] Mäkinen H, Colin F. Predicting branch angle and branch diameter of scots pine from usual tree measurements and stand structural information[J]. Canadian Journal of Forest Research, 1998, 28(11): 1686-1696.
[6] 李凤日. 长白落叶松人工林树冠形状的模拟[J]. 林业科学, 2004,40(5): 16-24.Li F R.Modeling crown profile of Larix olgensis trees[J]. Scientia Silvae Sinicae, 2004,40(5): 16-24.
[7] 刘兆刚,舒扬,李凤日. 樟子松人工林一级枝条基径和枝长模型的研究[J]. 植物研究, 2008(2): 244-248.Liu Z G, Shu Y, Li F R. Modeling for primary branch length and branch diameter of Mongolian scots pine trees[J]. Bulletin of Botancial Research, 2008(2):244-248.
[8] Hann D W. An adjustable predictor of crown profile for stand-grown Douglas-fir trees[J]. Forest Science, 1999, 45(2):217-225.
[9] 张智昌. 落叶松人工林枝条生长与节子大小预测模型的研究[D]. 哈尔滨:东北林业大学, 2010.Zhang Z C. Predicting models of branch growth and knot properties for Larix in plantation[D]. Harbin: Northeast Forestry University, 2010.
[10] 董灵波,刘兆刚,李凤日,等. 基于线性混合模型的红松人工林一级枝条大小预测模拟[J]. 应用生态学报, 2013(9): 2447-2456.Dong L B, Liu Z G, Li F R, et al. Primary branch size of Pinus koraiensis plantation: A prediction based on linear mixed effect model[J]. Chinese Journal of Applied Ecology, 2013(9):2447-2456.
[11] 姜立春,李凤日,张锐. 基于线性混合模型的落叶松枝条基径模型[J]. 林业科学研究,2012(4): 464-469.Jiang L C, Li F R, Zhang R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. Forest Research,2012(4): 464-469.
[12] Lindstrom M J, Bates D M. Nonlinear mixed effects models for repeated measures data[J]. Biometrics, 1990, 46: 673-687.
[13] Pinheiro J C, Bates D M. Mixed effects models in S and S-plus[M]. New York: Spring-Verlag, 2000.
[14] Crecente-Campo F, Tome M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943-952.
[15] Fu L, Sun H, Sharma R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir(Cunninghamia lanceolata)in south-central China[J]. Forest Ecology and Management, 2013, 302: 210-220.
[16] Meng Q, Cieszewski C J, Madden M, et al. A linear mixed-effects model of biomass and volume of trees using Landsat ETM+images[J]. Forest Ecology and Management, 2007, 244(1-3): 93-101.
[17] 姜立春,张锐,李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012,48(5): 53-60.Jiang L C, Zhang R, Li F R. Modeling branchlength and branch angle with linear mixed effects for Dahurian larch[J]. Scientia Silvae Sinicae, 2012,48(5): 53-60.
[18] 符利勇,李永慈,李春明,等. 利用 2 种非线性混合模型(2 水平)对杉木林胸径生长量的分析[J]. 林业科学,2012, 48(5): 36-43.Fu L Y, Li Y C, Li C M, et al. Analysis of the basal area for Chinese fir plantation using two kinds of nonlinear mixed effects model(two levels)[J]. Scientia Silvae Sinicae, 2012, 48(5): 36-43.
[19] 王春红,李凤日,贾炜玮,等. 基于非线性混合模型的红松人工林枝条生长[J]. 应用生态学报, 2013,24(7): 1945-1952.Wang C H, Li F R, Jia W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology,2013,24(7): 1945-1952.
[20] Groot A, Schneider R. Predicting maximum branch diameter from crown dimensions, stand characteristics and tree species[J]. The Forestry Chronicle, 2011, 87(4): 542-551.
[21] Meredieua C, Colinb F, Hervéc J. Modelling branchiness of Corsican pine with mixed-effect models(Pinus nigra Arnold ssp. laricio(Poiret)Maire[J]. Annals of Forest Science, 1998, 55(3): 359-374.
[22] Hein S, M A Kinen H, Yue C, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242(2): 155-164.
[23] 王妮,彭世揆,刘斌,等. 近10年江苏宿迁森林蓄积量变化的定量遥感监测[J]. 南京林业大学学报:自然科学版, 2013,37(5): 65-69.Wang N, Peng S K, Liu B, et al. A study on detecting the changes of the forest volume of Suqian in Jiangsu based on the quantitative remote sensing during 2000-2010 [J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2013, 37(5):65-69.
[24] 梁保松,朱景乐,王军辉,等. Pilodyn在华山松活立木木材材性估测中的应用[J]. 南京林业大学学报:自然科学版, 2008,32(6): 97-101.Liang B S, Zhu J L, Wang J H, et al.The application of the Pilodyn to assess wood traits of living trees in Pinus armandii[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2008, 32(6): 97-101.
[25] Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287-300.
[26] Vonesh E, Chinchilli V M. Linear and nonlinear models for the analysis of repeated measurements[M]. New York: Marcel Dekker, 1997.
[27] Castedo Dorado F, Di E Guez-Aranda U, Barrio Anta M, et al. A generalized height—diameter model including random components for radiata pine plantations in northwestern Spain[J]. Forest Ecology and Management, 2006, 229(1): 202-213.
[28] Nigh G. Calculating empirical best linear unbiased predictors(EBLUPs)for nonlinear mixed effects models in Excel/Solver[J]. Forestry Chronicle, 2012, 88(3): 340-344.
[29] 李耀翔,姜立春. 基于2层次线性混合模型的落叶松木材密度模拟[J]. 林业科学, 2013,49(7): 91-98.Li Y X, Jiang L C. Modeling wood density with two-level linear mixed effects models for Dahurian larch[J]. Scientia Silvae Sinicae, 2013,49(7): 91-98.

Last Update: 2015-03-31