我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

典型滨海湿地沉积物反硝化与硝态氮氨化 相对重要性研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年02期
Page:
9-15
Column:
专题报道(Ⅰ)
publishdate:
2016-03-30

Article Info:/Info

Title:
The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland
Article ID:
1000-2006(2016)02-0009-07
Author(s):
XU Sha CHEN Yuan YIN Jie HAN Jiangang* XUE Jianhui
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
coastal wetland denitrification dissimilatory nitrate reduction to ammonium 15N Spartina alterniflora
Classification number :
X53; S718; S19
DOI:
10.3969/j.issn.1000-2006.2016.02.002
Document Code:
A
Abstract:
This study aims to investigate nitrate reduction in sediments in a typical coastal wetland. Sediment samples were taken in different season and in different vegetation conditions(Phragmites australis, Spartina alterniflora community, the intergrowth area of the two species and mudflat)in Chongming Dongtan wetland in the Yangtze River Delta of China. Rates of dissimilatory nitrate reduction to ammonium(DNRA)and denitrification(Den)were estimated using 15N isotope dilution technique to detect the relative importance of the two reduction processes. Results showed that: ① Den rates in Spartina alterniflora community arrived to 31.29 μg/(kg·h)in winter, which was the highest among four vegetation communities(P<0.05). In contrast, this rates decreased to a very low range of 2.35-3.36 μg/(kg·h)in other three seasons. It revealed that there was a potential high amount of N loss via Den in winter in Spartina alterniflora community. ② DNRA rates in the mudflat(>120 μg/(kg·h))were much higher than those observed in vegetation community(<80 μg/(kg·h))in spring and winter. For different vegetations, the rate in Spartina alterniflora community was the highest(P<0.05). In contrast, DNRA rates in sediments without vegetation were lower than those with vegetation in summer and autumn, and no significant difference among three communities was found. This suggested that Spartina alterniflora possibly facilitates DNRA in spring and winter. ③ The ratios of DNRA and Den in Spartina alterniflora community(17-29)were much higher than those in the other vegetations(1-14)in spring, summer and autumn. However, in winter, this ratios were lower than the others(P<0.05). Therefore, DNRA dominates the reduction of nitrate in the coastal wetland. It would be very necessary to control of eutrification and N2O emission to reduce Spartina alterniflora in a coastal wetland. It is effective to control eutripication and to reduce N2O emission via reducing S. alterniflora in coastal metlands.

References

[1] 王邵军, 曹子林, 李小英, 等. 滇池湖滨带不同植被类型土壤碳、氮时空分布特征[J]. 南京林业大学学报(自然科学版), 2013, 37(5):55-59. Doi:10.3969/j.issn.1000-2006.2013.05.011. Wang S J, Cao Z L, Li X Y, et al. Spatiotemporal distributions of soil carbon and nitrogen under the four riparian zones in the Dianchi Lake[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5):55-59.
[2] 陆健健.中国滨海湿地的分类[J].环境导报,1996(1):1-2.
[3] Ward B B, Devol A H, Rich J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J].Nature, 2009, 461(7260): 78-81. Doi:10.1038/nature08276.
[4] Fernandes S O, Bonin P C, Michotey V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Sci Rep, 2012, 2: 419. Doi:10.1038/srep00419.
[5] Zhang W J, Zhang Y, Su W T, et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems[J]. Journal of Environmental Sciences, 2014, 26(4): 885-891. Doi:10.1016/S1001-0742(13)60460-X.
[6] 蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012, 44(5):712-718. Doi:10.3969/j.issn.0253-9829.2012.05.002. Cai Y J, Ding W X, Xiang J. Mechanisms of nitrous oxide and nitric oxide production in soils: a review[J]. Soils, 2012, 44(5):712-718.
[7] 王洋, 刘景双, 孙志高, 等. 湿地系统氮的生物地球化学研究概述[J]. 湿地科学, 2006, 4(4):311-320. Doi:10.3969/j.issn.1672-5948.2006.04.013. Wang Y, Liu J S, Sun Z G, et al. A review on nitrogen biogeochemistry study in wetland systems[J]. Wetland Science, 2006, 4(4):311-320.
[8] 韦宗敏.微好氧环境中硝酸盐异化还原成铵的影响研究[D].广州:华南理工大学,2012.
[9] Yin S X, Shen Q R, Tang Y, et al. Reduction of nitrate to ammonium in slected paddy soils of China[J]. Pedosphere,1998,8(3):221-228.
[10] Rütting T, Boeckx P, Müller C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7): 1779-1791. Doi:10.5194/bg-8-1779-2011.
[11] 蒋然, 陈韦丽, 王伟, 等. 珠江河口沉积物通过异化还原成铵的氮素内源性污染研究[J]. 珠江现代建设, 2015(3):24-28.
[12] 胡泓. 长江口芦苇湿地温室气体排放通量及影响因素研究[D]. 上海:华东师范大学, 2014.
[13] 万晓红,王雨春,陆瑾,等.白洋淀湿地氮素转化和N2O排放特征研究[J].水利学报,2009,40(10):1168-1174.
[14] 李文静.黄河沙岸带湿地污染特征及其反硝化活性研究[D].广州:华南理工大学,2011.
[15] 张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1):87-95. Doi:10.3969/j.issn.1671-6647.2005.01.013. Zhang X L, Li P Y, Li P, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Advances in marine science, 2005, 23(1):87-95.
[16] 崔洪磊, 徐莎, 印杰, 等. 植被收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究,2015, 28(8):1200-1208. Cui H L, Xu S, Yin J, et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Research of Environmental Sciences, 2015, 28(8):1200-1208. Doi:10.13198/j.issn.1001-6929.2015.08.04.
[17] Levenson H. Coastal systems: On the margin[C] // Coastal wetlands. New York:American Society of Civil Engineers, 2011:75-83.
[18] Burden A, Garbutt R A, Evans C D, et al. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment[J]. Estuarine, Coastal and Shelf Science, 2013, 120: 12-20. Doi:10.1016/j.ecss.2013.01.014.
[19] Gedan K B, Kirwan M L, Wolanski E, et al. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm[J]. Climatic Change,2011,106:7-29. Doi:10.1007/s10584-010-0003-7
[20] Irving A D, Connell S D, Russell B D. Restoring coastal plants to improve global carbon storage: reaping what we sow[J]. PLoS One, 2011, 6(3): e18311. Doi:10.1371/journal.pone.0018311.
[21] Hopkinson C S, Cai W J, Hu X P. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude [J]. Current Opinion in Environmental Sustainability, 2012,4(2):186-194. Doi:10.1016/j.cosust.2012.03.005
[22] 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009,18(2):157-162. Doi:10.3969/j.issn.1004-8227.2009.02.011. He X Q, Dai X R, Gu C J. A study on seasonal erosion-accretion cycle of Chongming east tidal flat, the Yangtze estuary[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2):157-162.
[23] 姜俊彦, 黄星, 李秀珍, 等. 潮滩湿地土壤有机碳储量及其与土壤理化因子的关系——以崇明东滩为例[J]. 生态与农村环境学报, 2015, 31(4):540-547. Doi:10.11934/j.issn.1673-4831.2015.04.015. Jiang J Y, Huang X, Li X Z, et al. Soil organic carbon storage in tidal wetland and its relationships with soil physico-chemical factors: a case study of dongtan of Chongming, Shanghai[J]. Journal of Ecology and Rural Environment, 2015, 31(4):540-547.
[24] 孙建飞, 白娥, 戴崴巍, 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J]. 生态学杂志, 2014, 33(9):2574-2580.Doi:10.13292/j.1000-4890.2014.0176. Sun J F, Bai E, Dai W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil[J]. Chinese Journal of Ecology, 2014, 33(9):2574-2580.
[25] 游丽丽.河口潮滩湿地植被对沉积物反硝化过程影响初探[D].上海:华东师范大学,2014.
[26] 李勇, 刘敏, 陆敏, 等. 崇明东滩芦苇湿地氧化亚氮排放[J]. 环境科学学报, 2010, 30(12):2526-2534. Li Y, Liu M, Lu M, et al. Phragmites australis effects on N2O emission in the Chongming eastern tidal flat[J].Acta Scientiae Circumstantiae, 2010, 30(12):2526-2534.
[27] 章振亚, 丁陈利, 肖明. 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J]. 生态学报, 2012, 32(21):6636-6646. Zhang Z Y, Ding C L, Xiao M. The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary[J]. Acta Ecologica Sinica, 2012, 32(21):6636-6646. Doi:10.5846/stxb201109201385.
[28] Laverman A M, Canavan R W, Slomp C P, et al. Potential nitrate removal in a coastal freshwater sediment(Haringvliet Lake, the Netherlands)and response to salinization[J]. Water Res, 2007, 41(14): 3061-3068.Doi:10.1016/j.watres.2007.04.002.
[29] 章振亚.崇明东滩湿地互花米草与芦苇、海三棱蔍草根际固氮微生物多样性研究[D].上海:上海师范大学,2012.
[30] Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiol Rev, 1999, 23(5): 563-590.Doi:10.1111/j.1574-6976.1999.tb00414.x.
[31] Thauer R K, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria[J]. Bacteriol Rev, 1977, 41(1): 100-180.
[32] Strohm T O, Griffin B, Zumft W G, et al. Growth yields in bacterial denitrification and nitrate ammonification[J].Appl Environ Microbiol, 2007, 73(5): 1420-1424. Doi:10.1128/AEM.02508-06.
[33] Yin S X, Chen D, Chen L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology & Biochemistry, 2002, 34(8):1131-1137.
[34] Schmidt C S, Richardson D J, Baggs E M. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils [J]. Soil Biology & Biochemistry, 2011, 43:1607-1611. Doi:10.1016/j.soilbio.2011.02.015.
[35] Silver W L, Herman D J, Firestone M K. Dissimilatory nitrate reduction to ammonium in upland tropical forestsoils[J]. Ecology, 2001, 82(9): 2410-2416.Doi:10.2307/2679925.

Last Update: 2016-04-01