我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

水曲柳FmGT8家族基因生物信息及表达模式分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年02期
Page:
27-32
Column:
专题报道(Ⅱ)
publishdate:
2016-03-30

Article Info:/Info

Title:
Bioinformation and expression pattern analysis of FmGT8 gene family in Fraxinus mandshurica
Article ID:
1000-2006(2016)02-0027-06
Author(s):
ZHOU Shan ZHAN Yaguang DONG Heng LIU Jingjing ZENG Fansuo*
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
Keywords:
Fraxinus mandshurica FmGT8 temporal and spatial expression tension wood bioinformatics
Classification number :
S792; Q786
DOI:
10.3969/j.issn.1000-2006.2016.02.005
Document Code:
A
Abstract:
The structure and characteristics of glycosyltransferase 8 family proteins in Fraxinus mandshurica were studied in this paper. The spatio temporal expression patterns and the response mechanism to gravity were revealed. On the one hand, analysis of structure and temporal expression patterns of FmGT8 genes provide the basis and inspiration for other woody plants; on the other hand, the study of gene function FmGT8 lay the foundation for directing the transformation of the cell wall composition and wood features and the use of biomass energy. Four FmGT8 genes were cloned from Fraxinus mandshurica in previous research. Application of bioinformation software on FmGT8 and its encoded protein was analyzed in detail. Ash leaf, xylem, skin samples were selected from May to September. The expression pattern in the circadian variation of FmGT8 genes was analyzed by real-time PCR. Tension wood of ash was sampled by one day, three days and seven days treatment. Analysis of the response patterns of FmGT8 gene transcription to gravity treatment. Three full-length FmGT8 genes(FmGT8-1, FmGT8-2, FmGT8-3)and a FmGT8 gene fragment(FmGT8-4)were obtained, which were uploaded to the NCBI and got the accession number(KP307672, KP307673, KP307674 and KP307675). The expressions of FmGT8-1, FmGT8-2, FmGT8-3 were the highest in xylem, while FmGT8-4 in the skin. The expression of FmGT8-1, FmGT8-2, FmGT8-3 were the highest in June, however, FmGT8-4 expressed in September was highest. The expression patterns of FmGT8 family genes varied in the response to gravity treatment. The expression levels of FmGT8-1, FmGT8-2. FmGT8-4 were the highest in TW, whereas FmGT8-3 in the OW. Expression patterns of FmGT8 family genes were difference which showed that the expressions of FmGT8 genes were spatiotemporal specificity. There were differences among the four genes in response to gravity treatment, which suggested FmGT8 gene family might be involved in cell wall and lignin synthesis.

References

[1] 王军, 侯丙凯. 植物小分子化合物的糖基化与糖基转移酶[J]. 植物生理学通讯, 2008, 44(5): 997-1003. Wang J,Hou B K. Glycosylation and glycoysltransferase of small molecular compounds of plant [J].Plant Physiology Communications, 2008, 44(5): 997-1003.
[2] Lee C, Zhong R, Richardson E A, et al. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis[J]. Plant and Cell Physiology, 2007, 48(12): 1659-1672.
[3] Lee C, Teng Q, Zhong R, et al. Arabidopsis GUX proteins are glucuronyltransferases responsible for the addition of glucuronic acid side chains onto xylan[J]. Plant and Cell Physiology, 2012, 53(7): 1204-1216.
[4] Yin Y, Chen H, Hahn M G, et al. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8[J]. Plant Physiology, 2010,153(4):1729-1746.
[5] Kong Y, Zhou G, Yin Y, et al. Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases[J]. Plant Physiology, 2011, 155(4): 1791-1805.
[6] 田鹏, 刘占林. 糖基转移酶超家族[J]. 生命的化学, 2011,31(5): 732-736. Tian P, Liu Z L. Glycosyltransferase supergene family [J]. Chemistry of Life, 2011, 31(5): 732-736.
[7] Albert N W, Lewis D H, Zhang H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. Journal of Experimental Botany, 2009, 60(7): 2191-2202.
[8] Krizek B A, Fletcher J C. Molecular mechanisms of flower development: an armchair guide[J]. Nature Reviews Genetics, 2005, 6(9): 688-698.
[9] Khannar R, Sheny Y, Marion C M, et al. The basic helix-loophelix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms[J]. Plant Cell, 2007, 19(12): 3915-3929.
[10] Andersson S I, Samuelson O, Ishihara M, et al. Structure of the reducing end-groups in spruce xylan[J]. Carbohydr Res,1983, 111(2): 283-288.
[11] Chatterjee M, Berbezy P, Vyas D, et al. Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves[J]. Plant Science,2005, 168(2): 501-509.
[12] Carpita N C. Structure and biogenesis of the cell walls of grasses[J]. Annu Rev Plant Physiology,1996, 47: 445-476.Doi:10.1146/annurev.arplant.47.1.445.
[13] 王克夷. 糖基转移酶的研究进展[J]. 生物化学与生物物理进展, 1994, 21(1): 9-13.
[14] 秦丽霞, 张德静, 李龙, 等. 参与植物细胞壁半纤维素木聚糖合成的糖基转移酶[J]. 植物生理学报, 2011, 47(9): 831-839.Doi:10.13592/j.cnki.ppj.2011.09.008. Qin L X, Zhang D J, Li L, et al. Glycosyltransferases involved in xylan biosynthesis in plant cell walls [J]. Plant Physiology Journal, 2011, 47(9): 831-839.
[15] 刘亚梅, 王传文, 方长华, 等. I-69 杨应拉木生长应力及纤维形态特征的研究[J]. 安徽农业大学学报, 2007, 34(4): 534-539.Doi:13610/j.cnki.1672-352x.2007.04.025. Liu Y M, Wang C W, Fang C H, et al. Growth stress and fiber morphology of tension wood in poplar I- 69 [J]. Journal of Anhui Agricultural University, 2007, 34(4): 534-539.
[16] 苌姗姗, 胡进波, 赵广杰. 不同干燥预处理对杨木应拉木孔隙结构的影响[J]. 北京林业大学学报, 2011, 33(2): 91-95.Doi:10.13332/j.1000.1522.2011.02.002. Chang S S, Hu J B, Zhao G J. Effects of different drying pretreatments on pore structure of poplar tension wood [J]. Journal of Beijing Forestry University, 2011, 33(2): 91-95.
[17] 刘亚梅, 刘盛全. 欧美杨 107 杨苗人工倾斜树干应拉木形成特征及其解剖特性[J]. 林业科学, 2010, 46(5): 133-140. Liu Y M, Liu S Q, Formation and anatomical characteristics of tension wood in stem of poplar I-107 seedlings(Populus×euramericana cv. “74 /76”)inducted by artifical inclination [J]. Scientia Silvae Sinicae, 2010, 46(5): 133-140.
[18] 苌姗姗, 胡进波,Clair Bruno,等. 氮气吸附法表征杨木应拉木的孔隙结构[J]. 林业科学, 2011, 47(10): 134-140. Chang S S, Hu J B, Clair Bruno, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method [J]. Scientia Silvae Sinicae, 2011, 47(10): 134-140.
[19] 高慧, 詹怀宇, 付时雨, 等. 欧美杨 107 杨正常木与应拉木木素结构的比较研究[J]. 中国造纸学报, 2009,24(2):9-13. Gao H, Zhan H Y, Fu S Y, et al. Comparative studies on the lignin structures in normal wood and tension wood of Populus× Euramericana cv. 74 /76[J]. Transactions of China Pulp and Paper, 2009, 24(2):9-13.
[20] 牛敏, 高慧, 赵广杰. 欧美杨 107 应拉木的纤维形态与化学组成[J]. 北京林业大学学报, 2010, 32(2): 141-144.Doi:13332/j.1000-1522.2010.02.002. Niu M, Gao H, Zhao G J. Fiber morphology and chemical composition of tension wood in Populus×Euramericana cv. ‘Neva'[J]. Journal of Beijing Forestry University, 2010, 32(2): 141-144.
[21] 周亮, 刘盛全, 高慧, 等. 欧美杨 107 正常木与应拉木纤维形态和化学组成比较[J]. 西北农林科技大学学报(自然科学版), 2012, 40(2):64-70. Zhou L, Liu S Q, Gao H, et al. Comparison of fiber morphological properties and chemical compositions between normal wood and tension wood in poplar clone 107(Populus × Euramericana cv. ‘Neva')tree [J]. Journal of Northwest A&F University(Natural Science Edition), 2012, 40(2):64-70.
[22] 余敏, 刘盛全, 檀华蓉. 人工倾斜杨树应拉木内源激素分布规律的初步研究[J]. 安徽农业大学学报, 2011, 38(6): 877-881.Doi:10.13610/j.cnki.1672-2152x.2011.06.009. Yu M, Liu S Q, Tan H R. Preliminary study on distribution of endogenous hormones of the tension wood in artificially inclined poplar [J]. Journal of Anhui Agricultural University, 2011, 38(6): 877-881.
[23] 陈承德, 林元辉. 三种阔叶树枝桠材应拉木和对应木的解剖特征及材性的研究[J]. 福建林业科技, 1999, 26(3): 7-12. Chen C D, Lin Y H. Study on the anatomical features and properties of tension wood and opposite wood of branches of three hardwoods[J]. Jour of Fujian Forestry Sci & Tech, 1999, 26(3):7-12.
[24] 丛建民,陈凤清,沈海龙,等. 水曲柳胚后熟时期MSAP 分析[J]. 南京林业大学学报(自然科学版),2015,39(3):39-44.Doi:10.3969/j.issn.1000-2006.2015.03.008. Cong J M,Chen F Q,Shen H L, et al. Research on the features of DNA methylation in embryo ripening period of Fraxinus mandshurica Rupr. based on the method of MSAP [J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2015,39(3):39-44.
[25] 梁楠松. 小黑杨bHLH转录因子基因的克隆及遗传转化[D].哈尔滨:东北林业大学,2014. Liang N S. Cloning and gentic transformation of bHLH transcription factor gene in Populus xiaohei T. S. Hwang et Liang[D]. Harbin: Northeast Forestry University,2014.
[26] John M W. The Proteomics protocols handbook[M]. New York:Humana Press, 2005: 571-607.
[27] Sen T Z, Jernigan R L, Garnier J, et al. GOR V server for protein secondary structure prediction[J]. Bioinformatics, 2005, 21(11):2787-2788.
[28] Petersen T N, Brunak S, Von Heijing G, et al. Signal P 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011,8(10):785-786.
[29] Hofmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments[J]. Biol Chem Hoppe-Seyler, 1993(374): 166.
[30] Horton P, Park K J, Obayashi O. WoLF PSORT: Protein localization predictor[J]. Nucleic Acids Research, 2007,35:585-587.
[31] Lim E K, Li Y, Baldanf S. Evolution of substrate recognition across a multigene family of glycosyltransferases in arabidopsis[J]. Glycobiology, 2003, 13(3): 139-145.
[32] 程强, 潘惠新, 徐立安, 等.杨树基因组计划及其分子生物学研究进展[J].南京林业大学学报(自然科学版), 2009, 33(1):131-135.Doi:10.3969/j.issn.1000-2006.2009.01.028. Cheng Q, Pan H X, Xu L A, et al. The poplar genome project and progress in poplar molecular biology studies [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 33(1):131-135.
[33] 李忠正. 可再生生物质资源——木质素的研究[J]. 南京林业大学学报(自然科学版),2012,36(1): 1-7.Doi:10.3969/j.issn.1000-2006.2012.01.001. Li Z Z. Research on renewable biomass resource—lignin [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012,36(1): 1-7.
[34] Li Q, Min D, Wang J P Y, et al. Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa xiaohei T. S. Hwang et Liang[D]. Harbin: Northeast Forestry University,2014.
[26] John M W. The Proteomics protocols handbook[M]. New York:Humana Press, 2005: 571-607.
[27] Sen T Z, Jernigan R L, Garnier J, et al. GOR V server for protein secondary structure prediction[J]. Bioinformatics, 2005, 21(11):2787-2788.
[28] Petersen T N, Brunak S, Von Heijing G, et al. Signal P 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011,8(10):785-786.
[29] Hofmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments[J]. Biol Chem Hoppe-Seyler, 1993(374): 166.
[30] Horton P, Park K J, Obayashi O. WoLF PSORT: Protein localization predictor[J]. Nucleic Acids Research, 2007,35:585-587.
[31] Lim E K, Li Y, Baldanf S. Evolution of substrate recognition across a multigene family of glycosyltransferases in arabidopsis[J]. Glycobiology, 2003, 13(3): 139-145.
[32] 程强, 潘惠新, 徐立安, 等.杨树基因组计划及其分子生物学研究进展[J].南京林业大学学报(自然科学版), 2009, 33(1):131-135.Doi:10.3969/j.issn.1000-2006.2009.01.028. Cheng Q, Pan H X, Xu L A, et al. The poplar genome project and progress in poplar molecular biology studies [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 33(1):131-135.
[33] 李忠正. 可再生生物质资源——木质素的研究[J]. 南京林业大学学报(自然科学版),2012,36(1): 1-7.Doi:10.3969/j.issn.1000-2006.2012.01.001. Li Z Z. Research on renewable biomass resource—lignin [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012,36(1): 1-7.
[34] Li Q, Min D, Wang J P Y, et al. Down-regulation of glycosyltransferase 8D genes in used reduced mechanical strength and xylan content in wood[J]. Tree physiology, 2011, 31(2): 226-236.
[35] Zhang Q, Pettolino F A, Dhugga K S, et al. Cell wall modifications in maize pulvini in response to gravitational stress[J]. Plant Physiology, 2011, 156(4): 2155-2171.

Last Update: 2016-04-01