|Table of Contents|

白桦BpGT14基因表达模式及对非生物 胁迫诱导的响应(PDF)



Article Info:/Info

The expression patterns of BpGT14 gene in Betula platypylla Suk. and the response to biotic stress
Article ID:
LI Leilei SUN Fengkun DONG Heng ZHAN Yaguang YAND Dan ZENG Fansuo*
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
birch(Betula platypylla Suk.) glycosyltransferase BpGT14 abiotic stress expression patterns
Classification number :
S792.153; Q786
Document Code:
Birch(Betula platypylla Suk.)GT14 gene sequence, named BpGT14 gene(JQ409354)have been cloned in this study. Bioinformatics was used to analyze its physical and chemical properties. The expression of BpGT14 gene in xylem, phloem, leaves and male inflorescence of wild birch was analyzed through real-time PCR. At the same time, we had treated suspension cells of birch stems with salicylic acid(SA), salt stress(NaCl), cadmium(CdCl2)and 4 ℃ to determine the stress response of BpGT14. Research indicated that the gene was 1 302 bp, encoding 433 amino acids. Protein analysis showed that the BpGT14 gene contained important domain of acetyl glucosaminyl transferase which belongs to a glycosyltransferase 14 family. The GT14 protein we selected from different species showed highly conserved amino acid sequence in the 100-350 region and the identity of BpGT14 and Populus trichocarpa GT14 was up to 79%. BpGT14 gene real-time quantitative PCR results showed that the gene expression had specificity in different months and parts. Meanwhile, the results showed that the expression levels of BpGT14 gene was higher in xylem, phloem and leaves than that in male inflorescence. The results of abiotic stress treatment showed that BpGT14 gene was respond to abiotic stress, but its response pattern was different. The results of SA,CdCl2 and 4 ℃ treatments showed that early treatment increased the expression of the target gene. After 6 h treatment, the expression of BpGT14 gene was 51.2, 48.9 and 3.3 times compared with the control group, but then the relative expression levels were lower compared with the control group except the 4℃ at 96 h. NaCl treatment had been showing downward trend and reduced by 93.7% compared with control in 24 h. This study was to reveal the molecular structure of BpGT14, figure out the expression patterns of BpGT14 and the response to biotic stress and explore the function of BpGT14 in birch growth and development. It provides the basis and inspiration for the research of other woody plants.


[1] Crocker P R, Paulson J C, Varki A. Siglecs and their roles in the immune system[J]. Nature Reviews Immunology, 2007, 7(4): 255-266.
[2] Mayer D C G, Jiang L, Achur R N, et al. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2358-2362.
[3] Lim E K, Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis[J]. The EMBO Journal, 2004, 23(15): 2915-2922.
[4] Paux E, Tamasloukht M B, Ladouce N, et al. Identification of genes preferentially expressed during wood formation in Eucalyptus[J]. Plant Molecular Biology, 2004, 55(2): 263-280.
[5] 杨少辉, 王洁华, 宋英今, 等. 杨树中与次生细胞壁生物合成相关的糖基转移酶研究进展[J]. 生物学杂志, 2013, 30(3): 68-71. Yang S H, Wang J H, Song Y J, et al. Involved in the secondary cell wall biosynthesis in popar[J]. Journal of Biology, 2013, 30(3): 68-71.
[6] 裴惠娟, 张满效, 安黎哲. 非生物胁迫下植物细胞壁组分变化[J]. 生态学杂志, 2011, 30(6): 1279-1286. Pei H J, Zhang M X, An L Z. Change of plant cell wall components under abiotic stresses[J]. Chinese Journal of Ecology, 2011, 30(6): 1279-1286.
[7] 姜廷波, 李绍臣, 高福铃, 等. 白桦 RAPD 遗传连锁图谱的构建[J]. 遗传, 2007, 29(7): 867-873. Jiang T B, Li S C, Gao F L, et al. Genetic linkage map of Betula pendula Roth. and Betula platyphylla Suk. based on random amplified polymorphisms DNA markers[J]. Hereditas, 2007, 29(7): 867-873.
[8] Liu X, Wang Q, Chen P, et al. Four novel cellulose synthase(CESA)genes from Birch(Betula platyphylla Suk.)involved in primary and secondary cell wall biosynthesis[J]. International Journal of Molecular Sciences, 2012, 13(10): 12195-12212.
[9] Williamson R E, Burn J E, Hocart C H. Towards the mechanism of cellulose synthesis[J]. Trends in Plant Science, 2002, 7(10): 461-467.Doi:10.1016/51360-1385(02)02335-X.
[10] Kim I A, Heo J O, Chang K S, et al. Over expression and inactivation of UGT73B2 modulate tolerance to oxidative stress in Arabidopsis[J]. Journal of Plant Biology, 2010, 53(3): 233-239.
[11] Fraissinet-Tachet L, Baltz R, Chong J, et al. Two tobacco genes induced by infection, elicitor and salicylic acid encode glucosyltransferases acting on phenylpropanoids and benzoic acid derivatives, including salicylic acid[J]. FEBS Letters, 1998, 437(3): 319-323.
[12] Tognetti V B, Van Aken O, Morreel K, et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance[J]. The Plant Cell, 2010, 22(8): 2660-2679.
[13] 王浩然,邵志龙,朱燕宇,等.‘南林895'杨PdNAC1基因克隆及蛋白的亚细胞定位[J].南京林业大学学报(自然科学版),2015,39(3):50-54. Doi:10.3969/j.issn.1000-2006.2015.03.010. Wang H R, Shao Z L, Zhu Y Y, et al. Cloning and sub-cellular localization of PdNAC1 in poplar ‘Nanlin895' [J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3): 50-54.
[14] Sen T Z, Jernigan R L, Garnier J, et al. GOR V server for protein secondary structure prediction[J]. Bioinformatics, 2005, 21(11): 2787-2788.
[15] Tamura K, Dudley J, Nei M. MEGA4: molecular evolutionary genetics analysis(MEGA)software version 4.0[J]. Molecular Biology and Evolution, 2007,24(8): 1596-1599.
[16] 尹静, 任春林, 詹亚光, 等. 可用于实时荧光定量 PCR 标准化的白桦内参基因[J]. 植物生理学通讯, 2010,46(10): 1061-1066. Yin J, Ren C L, Zhan Y G, et al. Selection of internal control genes for real-time RT-PCR normalization in white birch(Betula platyphylla Suk.)[J]. Plant Physiology Journal.,2010,46(10): 1061-1066.
[17] 王镜岩, 朱圣庚, 徐长法. 生物化学:上[M]. 3版.北京: 高等教育出版社, 2002: 229.
[18] Nishikubo N, Takahashi J, Roos A A, et al. Xyloglucan endo-transglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen[J]. Plant Physiology, 2011, 155(1): 399-413.
[19] Williamson R E, Burn J E, Hocart C H. Towards the mechanism of cellulose synthesis[J]. Trends in Plant Science, 2002, 7(10): 461-467.
[20] Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807.
[21] 邵明海. 拟南芥编码糖基转移酶基因 2247 的分子克隆和功能分析[D]. 上海:中国科学院上海生命科学研究院, 2002. Shao M H. Molecular cloning and functional analysis of gene 2247 encoding glycosyltransferase in Arabidopsis[D]. Shanghai: Shanghai Institutes for Biological Sciences, CAS, 2002.
[22] 曾凡锁, 南楠, 詹亚光. 富含多糖和次生代谢产物的白桦成熟叶中总 RNA 的提取[J]. 植物生理学通讯, 2007, 43(5): 913-916. Zeng F S, Nan N, Zhan Y G. Extraction of total RNA from mature leaves rich in polysaccharides and secondary metabolites of Betula platyphylla Suk.[J]. Plant Physiology Journal, 2007, 43(5): 913-916.
[23] 郑佳. 杨树维管形成层发的基因表达调控[D]. 南京:南京林业大学, 2012. Zheng J. Genomic scale transcriptome and expression analysis of vascular cambium in poplar[D].Nanjing:Nanjing Forestry University, 2012.
[24] Prasad M N V. Cadmium toxicity and tolerance in vascular plants[J]. Environmental and Experimental Botany, 1995, 35(4): 525-545.
[25] 刘清泉, 陈亚华, 沈振国, 等. 细胞壁在植物重金属耐性中的作用[J]. 植物生理学报, 2014, 50(5): 605-611. Liu Q Q, Chen Y H, Shen Z G, et al. Roles of cell wall in plant heavy metal tolerance [J]. Plant Physiology Journal, 2014, 50(5): 605-611.
[26] 唐贤丰. 烟草中过表达番茄特异糖基转移酶基因提高耐冷性[D]. 泰安:山东农业大学, 2011. Tang X F. Over expression of tomato-specific glycosyltransferase gene improve tobacco cold tolerance [D]. Taian:Shangdong Agriculture University,2011.
[27] 陈容,张丽,曹颖,等.低温胁迫下梁山慈竹再生植株叶绿素荧光特性和耐寒转录因子的表达[J].南京林业大学学报(自然科学版),2014, 38(4): 39-44.Doi:10.3969/j.issn.1000-2006.2014.04.008. Chen R, Zhang L, Cao Y, et al. Chlorophyll fluorescence parameters and expression of cold-related transcription factors in regenerated plants of Dendrocalamus farinosus under cold stress[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(4): 39-44.
[28] Lim E K, Doucet C J, Li Y, et al. The activity of Arabidopsis glycosyl transferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates[J]. Journal of Biological Chemistry, 2002, 277(1): 586-592.
[29] Kerepesi I, Galiba G. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J]. Crop Science, 2000, 40(2): 482-487.
[30] Khatkar D, Kuhad M S. Short-term salinity induced changes in two wheat cultivars at different growth stages[J]. Biologia Plantarum, 2000, 43(4): 629-632.

Last Update: 2016-04-01