我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

氯化亚铜对阻燃体系复合酚醛泡沫性能的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年02期
Page:
132-138
Column:
研究论文
publishdate:
2016-03-30

Article Info:/Info

Title:
Effect of cuprous chloride on properties of flame retardant system composite phenolic foams
Article ID:
1000-2006(2016)02-0132-07
Author(s):
MA Yufeng1 WANG Chunpeng2 CHU Fuxiang2*
1. College of Materials Science and Engineering,Nanjing Forestry University, Nanjing 210037, China;
2. Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing 210042, China
Keywords:
phenolic foam sysergistic flame retardant system limited oxygen index(ILOI) thermal insulation material
Classification number :
TQ328.2
DOI:
10.3969/j.issn.1000-2006.2016.02.022
Document Code:
A
Abstract:
This paper investigated the effect of cuprous chloride on flame retardancy properties of phenolic foam composite with flame retardancy system consisted of ammonium polyphosphate, pentaerythritol and cuprous chloride. We discussed in detail the effect of cuprous chloride on limited oxygen index(ILOI), heat release rate(RHRR), total heat release(qTHR), specific extinction area(qSEA), effective heat of combustion(qEHC), oxygen consumption(qO2C), total smoke release(qTSR), carbon monoxide production(qCOP)and carbon dioxide production(qCO2P)etc. Experimental results showed that phenolic foam composites exhibited good flame retardancy with such flame retardancy system, the ILOI of which ranged from 71.5% to 73.5%. Flame retardant system functioned in accordance with the gas-phase flame retardancy mechanism in the phenolic foam composite. Phenolic composite showed the best flame retardancy as the content of cuprous chloride in the range of 1.0% -1.5% in the composite system.

References

[1] Lei S, Guo Q, Zhang D, et al. Preparation and properties of the phenolic foams with controllable nanometer pore structure[J]. Journal of Applied Polymer Science, 2010,117(6):3545-3550.Doi: 10.1002/app.32280.
[2] Shen H, Lavoie A J, Nutt S R. Enhanced peel resistance of fiber reinforced phenolic foams[J]. Composites Part A: Applied Science and Manufacturing, 2003,34(10):941-948.Doi:10.1016/S1359-835X(03)00210-0.
[3] Shen H, Nutt S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906.Doi:10.1016/S1359-835X(03)00136-2.
[4] Yang H, Wang X, Yuan H, et al. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J]. Journal of Polymer Research, 2012,19(3):1-10.Doi:10.1007/s10965-012-9831-7.
[5] Auad M L, Zhao L, Shen H, et al. Flammability properties and mechanical performance of epoxy modified phenolic foams[J]. Journal of Applied Polymer Science, 2007,104(3):1399-1407.Doi:10.1002/app.24405.
[6] Wang L, Jiang J, Jiang P, et al. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer(EVM)rubber[J]. Journal of Polymer Research, 2010,17(6):891-902.Doi:10.1007/s10965-009-9381-9.
[7] Wu K, Song L, Wang Z, et al. Preparation and characterization of double shell microencap-sulated ammonium polyphosphate and its flame retardance in polypropylene[J]. Journal of Polymer Research, 2009,16(3):283-294.Doi:10.1007/s10965-008-9228-9.
[8] Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene[J]. Polymers for Advanced Technologies, 2008,19(8):1118-1125.Doi: 10.1002/pat.1095.
[9] Camino G, Grassie N, McNeill I. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(methyl methacrylate)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1978,16(1):95-106.Doi:10.1002/pol.1978.170160110.
[10] Mathan N D, Arunjunairaj M, Rajkumar T, et al. Thermal degradation of pentaerythritol phosphate alcohol: TG and TG-MS studies[J]. Journal of Thermal Analysis and Calorimetry, 2012,110(3):1133-1141.Doi:10.1007/s10973-011-2015-6.
[11] Allen D W, Anderton E C, Shiel L E. Structure-property relationships in intumescent fire-retardant derivatives of 4-hydroxymethyl-2, 6, 7-trioxa-1-phosphabicyclo
[2, 2, 2] octane-1-oxide[J]. Polymer Degradation and Stability, 1994,45(3):399-408.Doi:10.1016/0141-3910(94)90210-0.
[12] Hu X P, Li Y L, Wang Y Z. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene[J]. Macro-molecular Materials and Engineering, 2004,289(2):208-212.Doi:10.1002/mame.200300189.
[13] Wescott J L D. Mujsce W A M, Linxwiler P A. Mechanistic studies on the role of copper-and molybdenum-containing species as flame and smoke suppressants for poly(vinyl chloride)[J]. Journal of Analytical and Applied Pyrolysis, 2002,8:163-172.Doi:10.1016/0165-2370(85)80023-1.
[14] Li B, Xu M. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene[J]. Polymer Degradation and Stability, 2006,91(6):1380-1386.Doi:10.1016/j.poly-mdegradstab.2005.07.020.
[15] Liu Y, Yi J, Cai X. The investigation of intumescent flame-retarded polypropylene using poly(hexamethylene terephthalamide)as carbonization agent[J]. Journal of Thermal Analysis and Calorimetry, 2012,107(3):1191-1197.Doi:10.1007/s10973-011-1874-1.
[16] Zhang Q, Chen Y. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene[J]. Journal of Polymer Research, 2011,18(2):293-303.Doi:10.1007/s10965-010-9418-0.
[17] 李斌, 孙才英, 张秀成. 用锥形量热仪研究聚乙烯膨胀阻燃体系的燃烧性[J]. 高等学校化学学报, 1999,146:149.Doi:CNKI:SUN:GDXH.0.1999-01-034.
[18] Ribeiro S P S, Estevão L R M, Nascimento R S V. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation[J]. Journal of Thermal Analysis and Calorimetry, 2007,87(3):661-665.Doi:10.1007/s10973-006-7872-z.
[19] Wang X L, Wu L L, Li J. Synergistic flame retarded poly(methyl methacrylate)by nano-ZrO2 and triphenylphosphate[J]. Journal of Thermal Analysis and Calorimetry, 2011,103(2):741-746.Doi:10.1007/s10973-010-1050-z.
[20] Yi J, Liu Y, Cai X. The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent[J]. Journal of Thermal Analysis and Calorimetry, 2013,113(2):753-761.Doi:10.1007/s10973-012-2802-8.
[21] Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent[J]. Journal of Thermal Analysis and Calorimetry, 2013,111(1):725-734.Doi:10.1007/s10973-012-2211-z.
[22] Yin H Q, Yuan D D, Cai X F. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS[J]. Journal of Thermal Analysis and Calorimetry, 2013,111(1):499-506.Doi:10.1007/s10973-012-2536-7.
[23] Holdsworth A, Horrocks A, Kandola B, et al. The potential of metal oxalates as novel flame retardants and synergists for engineering polymers[J]. Polymer Degradation and Stability, 2014,110:290-297.Doi:10.1016/j.polymdegradstab.2014.09.007.
[24] Chen X, Sun T, Cai X. The investigation of intumescent flame-retarded ABS using zinc borate as synergist[J]. Journal of Thermal Analysis and Calorimetry, 2014,115(1):185-191.Doi:10.1007/s10973-013-3302-1.
[25] Ma Y, Wang J, Xu Y, et al. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2013,114(3):1143-1151.Doi:10.1007/s10973-013-3180-6.
[26] Felix T, Pinto O P, Peres A, et al. Comparison of bismuth trioxide and antimony trioxide as synergists with decabromodiphenyl ether in flame retardancy of high-impact polystyrene[J]. Journal of Fire Sciences, 2012,30(6):566-574.Doi: 10.1177/0734904112456004.
[27] Liu Y, Wang Z, Wang Q. Effects of magnesium hydroxide and its synergistic systems on the flame retardance of polyformaldehyde[J]. Journal of Applied Polymer Science, 2012,125(2):968-974.Doi:10.1002/app.36330.
[28] 王萃萃, 戴震, 许戈文. 硬段阻燃改性水性聚氨酯的研究[J]. 中国涂料, 2010,25(8):57-60.Doi:10.13531/j.cnki.china.coat-ings.2010.08.10. Wang C C,Dai Z,Xu G W. Research on hard-segment flame-retardant modification of waterborne polyurethane[J]. China Coatings,2010,25(8):57-60.
[29] 欧育湘,李建军. 阻燃剂[M]. 北京: 化学工业出版社, 2006.
[30] 欧育湘. 实用阻燃技术[M]. 北京: 化学工业出版社, 2002.
[31] 田春明, 谢吉星. 金属氧化物对阻燃聚丙烯热降解动力学的影响[J]. 山西大学学报(自然科学版), 2003,26(3):231-234.Doi:10.13451/j.cnki.shanxi.univ(nat.sci.).2003.03.011. Tian C M, Xie J X. The effect of metal oxides on thermal oxidative degradation kinetics of intumescent flame retardant polypropylene[J]. Journal of Shanxi University(Nature Science Edition),2003,26(3):231-234.
[32] ISO 5660-1. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate(cone calorimeter method)[S/OL].Doi:http://www.iso.ch.
[33] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价—锥形量热仪(CONE)法[J]. 高分子材料科学与工程, 1998,14(5):15-19.Doi:CNKI:SUN:GFZC.0.1998-05-003. Li B, Wang J Q. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymeric materials [J]. Polymer Materials Science & Engineering, 1998, 14(5):15-19.
[34] 孙杰, 焦传梅. 氧化锌与膨胀型阻燃剂对聚丙烯的协效阻燃[J]. 青岛科技大学学报(自然科学版), 2012,33(2):172-176.Doi:CNKI:SUN:QDHG.0.2012-02-015. Sun J, Jiao C M. Synergistic flame resistant effect of zinc oxide and intumescent flame retardant in poly propylene[J]. Journal of Qingdao University Science and Technology(Natural Science Edition), 2012, 33(2):172-176.
[35] Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Polymers for Advanced Technologies, 2003,14(1):3-11.Doi:10.1002/pat.265.
[36] 邓小波, 王继刚, 刘白玲. 锥形量热仪在饰面型防火涂料防火性能研究中的应用[J]. 涂料工业, 2011,41(12):50-53.Doi:CNKI:SUN:TLGY.0.2011-12-013. Deng X B, Wang J G, Liu B L. Application of cone calorimeter in the study of combustion properties on finishing fire retardant paint [J]. Paint & Coatings Industry,2011,41(12):50-53.
[37] Almeras X, Le Bras M, Hornsby P, et al. Effect of fillers on the fire retardancy of intumescent polypropylene compounds[J]. Polymer Degradation and Stability, 2003,82(2):325-331.Doi:10.1016/S0141-3910(03)00187-3.
[38] Manfredi L B, Rodríguez E S, Wladyka-Przybylak M, et al. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres[J]. Polymer Degradation and Stability, 2006,91(2):255-261.Doi:10.1016/j.polymdegradstab.2005.05.003.
[39] Zhu X, Pan Q, Xu H, et al. Effects of coal and ammonium polyphosphate on thermal degradation and flame retardancy of polyethylene terephthalate[J]. Journal of Polymer Research, 2010,17(5):621-629.Doi:10.1007/s10965-009-9350-3.
[40] Yeh J, Hsieh S, Cheng Y, et al. Combustion and smoke emission properties of poly(ethylene terephthalate)filled with phosphorous and metallic oxides[J]. Polymer Degradation and Stability, 1998,61(3):399-407.Doi:10.1016/S0141-3910(97)00225-5.
[41] Zhang J, Silcock G, Shields T. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry[J]. Journal of Fire Sciences, 1995,13(2):141-161.Doi:10.1177/073490419501300204.
[42] Kroenke W J. Metal smoke retarders for poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 1981,26(4):1167-1190.Doi:10.1002/app.1981.070260411.
[43] Fang Y, Wang Q, Bai X, et al. Thermal and burning properties of wood flour-poly(vinyl chloride)composite[J]. Journal of Thermal Analysis and Calorimetry. 2012,109(3):1577-1585.Doi:10.1007/s10973-011-2071-y.

Last Update: 2016-04-01