我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

叶轮出口宽度对森林消防泵性能的影响及其优化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年02期
Page:
190-194
Column:
研究简报
publishdate:
2016-03-30

Article Info:/Info

Title:
Impact of impeller exit width on forestry fire pump performance and its optimization
Article ID:
1000-2006(2016)02-0190-05
Author(s):
WANG Dong1 ZHOU Ruiqiong2 ZHENG Nan3 RU Yu3 LIU Chenglin1
1.Nanjing Forest Police College, Nanjing 210023, China;
2.Jiangsu Provincial Productivity Center, Nanjing 210037, China;
3.College of Electronic and Mechanical Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
exit width of impeller computational fluid dynamics(CFD) optimum working frequency large flow large head
Classification number :
TH311
DOI:
10.3969/j.issn.1000-2006.2016.02.032
Document Code:
A
Abstract:
Exit width of impeller has a vital impact on the performance of forestry fire pump.The optimum exit width of impeller was determined through numerical calculation in this paper. The exit width of impeller was optimized by means of PRO/E while the inlet and outlet blade angle, inlet and outlet diameter and other parameters kept unchanged. The exit width of impeller was set 8, 10 and 12 mm and then the performance of the forestry fire pump was simulated with respect to different exit widths of impeller by means of CFD(computational fluid dynamics),in an effort to obtain the optimal exit width for large head and large flow pump. It was calculated that exit width of impeller of 10 mm was the optimum dimension, with which the velocity and pressure fields of inner fluid were well distributed and can reach as high as 40 m/s and 2.0×105 Pa, and the optimum working efficiency could reach 91.72%. Experimental test in field confirmed pump with exit width of impeller of 10 mm could meet the requirement in terms of the head and the flow.

References

[1] Kim J, S, Park W G. Optimized inverse design method for pump impeller[J]. Mechanics Research Communications,2000,27(4):465-473.
[2] Lehnhauser T, Schafer M. A numerical approach for shape optimization of fluid flow domains[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(50-51/52):5221-5241.
[3] 邱丽芳,刘谦刚,佘运杰. 基于虚拟仪器技术的水泵性能测试系统设计[J]. 中南林业科技大学学报,2008,28(6):144-148. Qiu L F, Liu Q G,She Y J. Based on the virtual instrument technology pump performance test system [J]. Journal of Central South University of Forestry & Technology, 2008,28(6): 144-148.
[4] Wei L,Shi W D,Jiang X P,et al.Analysis on internal solid-liquid two-phase flow in the impellers of sewage pump[C]// International Conference on Advances in Computational Modeling and Simulation,Procedia Engineering,2012,31:170-175.
[5] 谢洁飞,李香桂,杨辉. 基于CFD的离心泵内部流场数值模拟与性能预测[J]. 中南林业科技大学学报,2010,30(3):129-132. Xie J F, Li X G, Yang H. Inner flow field numerical simulation and performance forecast of centrifugal pump based on CFD [J]. Journal of Central South University of Forestry & Technology, 2010,30(3): 129-132.
[6] 陈次昌,宋文武,杨昌明,等. 离心泵三维设计的研究[J]. 农业机械学报,2002,33(3):34~36. Chen C C, Song W W, Yang C M, et al. Three-dimensional design centrifugal pump [J]. Transaction of the Chinese Society for Agricultural, 2002,33(3): 34-36.
[7] 吴玉林,刘娟,陈铁军,等. 叶片泵设计与实例[M]. 北京:机械工业出版社,2011:236-247. Wu Y L, Liu J, Chen T J, et al. Vane pump design and examples [M] Beijing: Mechanical Industry Press, 2011:236-247.
[8] 沈阳水泵研究所. 叶片泵设计理论[M]. 北京:机械工业出版社,1983:162-173 Shenyang Institute of Pumps. Vane pump design theory [M]. Beijing: Mechanical Industry Press, 1983:162-173.
[9] 王昌生,李志鹏,陈芳芳,等.多级离心泵首级叶轮内部流动的数值模拟[J].水电能源科学,2012,30(6):147-150. Wang C S,Li Z P, Chen F F, et al. Numerical simulation of internal flow of first-stage impeller imultistage centrifugal pump[J].Water Resources and Power, 2012,30(6): 147-150.
[10] 丛小青,王光辉,袁丹青,等. 空间导叶式离心泵的数值计算及优化设计[J]. 排灌机械工程学报,2010,28(6):488-491. Cong X Q, Wang G H, Yuan D Q, et al. Numerical calculation and optimal design of centrifugal pump with space guide vanes[J].Journal of Drainage and Irrigation Machinery Engineering, 2010,10,28(6): 488-491.
[11] Zhang Y,Li Y,Cui B,et al.Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump[J].Chinese Journal of Mechanical Engineering, 2013,26(1):53-60.
[12] 王福军. 计算流体动力学分析-CFD软件原理及应用[M]. 北京:清华大学出版社,2004. Wang F J. Computational fluid dynamics analysis software -CFD principles and applications [M]. Beijing: Tsinghua University Press, 2004.
[13] 关醒凡. 泵的理论与设计[M]. 北京:机械工业出版社,1987:185-256. Guan X F.Pump theory and design [M]. Beijing: Mechanical Industry Press, 1987:185-256.
[14] 李进良,李晨曦,胡仁喜,等. 精通FLUENT6.3流场分析[M]. 北京:化学工业出版社,2009. Li J L, Li C X, Hu R X, et al. Proficient FLUENT6.3 flow field analysis [M]. Beijing: Chemical Industry Press, 2009.
[15] Choi Y D, Nishino K, kurokawa J, et al. PIV measurement of internal flow characteristics of very specific speed semi-open impeller[J]. Experiments in Fluids, 2004,37(5):617-630.

Last Update: 2016-04-01