我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

环境温度对活立木横截面电阻值的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2016年04期
Page:
143-148
Column:
研究论文
publishdate:
2016-08-30

Article Info:/Info

Title:
Effects of environmental temperature on the electrical resistance on the cross section in standing tree
Article ID:
1000-2006(2016)04-0143-06
Author(s):
WANG Yuting XU Huadong* WANG Lihai LIU Zexu WANG Xinglong SUN Yuting
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
Keywords:
standing trees environmental temperature electrical resistance tomography cross section
Classification number :
S781.2
DOI:
10.3969/j.issn.1000-2006.2016.04.023
Document Code:
A
Abstract:
In order to investigate the effect of environmental temperature on the internal electrical resistance value of standing trees, two standing tree(Larix gmelinii and Populus simonii)specimens were selected and tested using the electrical impedance tomography instrument at different environmental temperatures. Some two-dimensional electrical impedance images of cross section of specimens were then obtained and comparatively analyzed. The electrical resistance value of each point on the cross section was quantitatively examined and the relationship between these values and temperature were discussed. Research results showed that: ① For L. gmelinii, the electrical resistance value of heartwood was lower than that of the sapwood. As temperature decreased, the red area(high resistance region)at sapwood reduced and the blue area(low resistance region)at heartwood increased. For P. simonii, the result was completely opposite. However, the average electrical resistance values for overall cross section increased as temperature decreased. ② There were highly significant exponential regression models between the sample electrical resistance values and temperature(P<0.01)with the correlation coefficients of ≥0.822(L. gmelinii)and ≥0.926(P. simonii). ③ For L. gmelinii, when temperatures were above 0 ℃, the fluctuation of radial resistance value was not obvious, and the maximum difference was 1 236 Ω(at 3.0 ℃). When temperatures were below 0 ℃, it fluctuated greatly, and the maximum difference was 3 299 Ω(-5.0 ℃). There are two troughs and one peak in the middle of the trend line. ④ For P. simonii, the resistance value of each point in the radial direction showed a trend of increase with the decrease of temperature. The resistance value increased initially and then decreased from one edge to the other in the radial direction.

References

[1] Skutt H R, Shigo A L, Lessard R A. Detection of discolored and decayed wood in living trees using a pulsed electric current[J]. Canadian Journal of Forest Research, 1972, 2(1): 54-56. Doi:10.1139/x72-010.
[2] Tattar T A, Shigo A L, Chase T. Relationship between the degree of resistance to a pulsed electric current and wood in progressive stages of discoloration and decay in living trees[J]. Canadian Journal of Forest Research, 1972, 2(3): 236-243. Doi:10.1139/x72-039.
[3] Shigo A L, Shigo A. Detection of discoloration and decay in living trees and utility poles[R]. USDA Forest Service Research Paper NE-294, 1974.
[4] Bengtsson B. Anordning och användning vid detektering av rötaangreppi biologiskt material, företrädesvis träd. Swedish Patent: 9703540-6[P]. 1997-06-08.
[5] Just A, Jacbbs F. Elektrische widerstandstomographie zur untersuchung des gesundheitszustandes von bäumen VII[C]//Seminar Hochauflösende Geoelektrik. Universität Leipzig, Institut für Geophysik und Geologie, 1998.
[6] Bieker D, Rust S. Electric resistivity tomography shows radial variation of electrolytes in Quercus robur[J].Canadian Journal of Forest Research, 2010, 40(6): 1189-1193.
[7] Lin C J, Chung C H, Yang T H, et al. Detection of electric resistivity tomography and evaluation of the sapwood-hearwood demarcation in three Asia Gymnosperm species[J]. Silva Fennica, 2012, 46(3): 415-424.
[8] Brazee N J, Marra R E, Göke L, et al. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography[J]. Forestry, 2011, 84(1): 33-39. Doi:10.1093/forestry/cpq040.
[9] 刁秀明, 孙品. 木材电学性质与电测含水率计的使用[J]. 木材加工机械, 1993, 18(3):18-20. Doi:10.13594/j.cnki.mcjgjx.1993.03.008. Diao X M, Sun P. Electrical properties of wood and the use of electric moisture meter[J]. Wood Processing Machinery, 1993, 18(3):18-20.
[10] 杜洪双, 李荣, 修洪波, 等. 柞木干燥中电阻率与温度和含水率的关系[J]. 北华大学学报(自然科学版), 2002, 3(4):349-351. Doi:10.3969/j.issn.1009-4822.2002.04.029. Du H S, Li R, Xiu H B,et al. The relationship between resistivity and temperature and moisture content in dry oak[J]. Journal of Beihua University(Natural Science), 2002, 3(4):349-351.
[11] 徐速, 周启友, 刘汉乐. ERT法在树干水分运移监测中的运用[J]. 桂林工学院学报, 2006, 26(3):347-352. Doi:10.3969/j.issn.1674-9057.2006.03.007. Xu S, Zhou Q Y, Liu H L. The application of ERT method in the monitoring of trunk water movement[J]. Journal of Guilin University of Technology, 2006, 26(3):347-352.
[12] 吴华桥, 周启友, 刘汉乐. 树干水分分布及运移的高密度电阻率成像法时空监测[J]. 地球物理学进展, 2008, 23(4):1310-1316. Wu H Q, Zhou Q Y, Liu H L. Temporal and spatial monitoring of water distribution and migration in a tree trunk using electrical resistivity tomography[J]. Progress in Geophysics, 2008, 23(4):1310-1316.
[13] 吴华桥, 周启友, 刘汉乐, 等. 电阻率成像法在树干水分吸收过程研究中的应用[J]. 生态学杂志, 2009, 28(2):350-356. Wu H Q, Zhou Q Y, Liu H L,et al. Application of electrical resistivity tomography in studying water uptake process in tree trunk[J]. Chinese Journal of Ecology, 2009, 28(2):350-356.
[14] 王立海, 王洋, 高珊, 等. 冻结状态下应力波在长白落叶松立木中传播速度的研究[J]. 北京林业大学学报, 2009, 31(3):96-99. Doi:10.3321/j.issn:1000-1522.2009.03.017. Wang L H, Wang Y, Gao S,et al. Stress wave propagating velocity in Larix olgensis standing trees under a freezing condition[J]. Journal of Beijing Forestry University, 2009, 31(3):96-99.
[15] 鲍震宇, 王立海. 电阻测试法在立木腐朽检测中的应用研究进展[J]. 森林工程, 2013, 29(6):47-51. Doi:10.3969/j.issn.1001-005X.2013.06.012. Bao Z Y, Wang L H. Application of electrical resistance testing method in detection of decay in standing trees[J]. Forest Engineering, 2013, 29(6):47-51.

Last Update: 2016-08-30