我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

赤桉抗风和生长性状的SSR关联分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年04期
Page:
97-105
Column:
研究论文
publishdate:
2018-07-12

Article Info:/Info

Title:
SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits
Article ID:
1000-2006(2018)04-0097-09
Author(s):
SHANG Xiuhua ZHANG Peijian XIE Yaojian LUO Jianzhong LI ChaoWU Zhihua*
China Eucalypt Research Centre, State Forestry Administration, Zhanjiang 524022, China
Keywords:
Eucalyptus camaldulensis wind resistance traits population structure association analysis allelic variation
Classification number :
S722.3+6
DOI:
10.3969/j.issn.1000-2006.201711019
Document Code:
A
Abstract:
Abstract: 【Objective】To elucidate Eucalyptus camaldulensis wind resistance, identify molecular markers and favorable alleles, and select genetic materials with favorable alleles for breeding wind resistant eucalyptus. 【Method】One-hundred and nine E. camaldulensis half-sibs were selected as materials and 107 pairs of SSR primers with high polymorphism were used for genotype detection with a correlation analysis method. Structure 2.3.4 software was used to analyze population structure and calculate linkage disequilibrium statistics. Association analysis with four E. camaldulensis wind resistant traits, including tree height, diameter-at-breast-height(DBH), volume, and wind damage index, was carried out using TASSEL 3.0 software together with the mixed linear model(MLM)methods. Based on the phenotypic effects, excellent allele loci were identified and counted. 【Result】 The 109 E. camaldulensis materials were divided into two subgroups based on population genetic structure analysis. Twenty-five SSR markers(P<0.05)related to wind resistance were obtained by association analysis, which explained the 9.26%-71.14% phenotypic variation of growth traits and wind resistance, with an average interpretation rate of 36.27%. Thirteen markers were related to tree height; the highest contribution rate was observed for EUCeSSR235(71.14%), the maximum allelic variation in phenotypic effect was exhibited by EUCeSSR352-320, and nine typical materials were detected. Seven markers correlated significantly with DBH. The highest contribution rate was demonstrated by EUCeSSR332(63.29%), while EUCeSSR489-128 had the greatest variation in phenotypic effect, and 11 typical materials were detected. Five markers were related to volume; the highest contribution rate was exhibited by EUCeSSR332(61.38%), EUCeSSR489-128 had the greatest variation in phenotypic effect, and 11 typical materials were detected. Ten markers were related to wind resistance index; EUCeSSR235 had the highest contribution rate(71.14%), EUCeSSR875-90 had the greatest variation in phenotypic effect, and 34 typical materials were detected. Seven markers were associated with >2 traits; EUCeSSR332 was related to tree height, DBH, volume, and wind damage index, which could explain the phenotypic variation rate of >60%. EUCeSSR484, EUCeSSR352, EUCeSSR570, and EUCeSSR422 were associated with two tree height and wind damage index traits and EUCeSSR489 and EUCeSSR114 were associated with tree height and volume. 【Conclusion】The genetic structure of the 109 E. camaldulensis materials was simple and the linkage disequilibrium was low. Based on the SSR association analysis, a number of excellent E. camaldulensis wind resistance allelic variation genes were identified and the selected molecular markers were provided for Eucalyptus breeding.

References

[1] ARNOLD R J, XIEY J, MIDGLEGY S J, et al. Emergence and rise of eucalypt veneer production in China[J]. International Review, 2013, 15(1):33-47.DOI: 10.1505/146554813805927200.
[2] GRATTAPAGLIA D, KIRST M. Eucalyptus applied genomics: from gene sequences to breeding tools[J]. New Phytologist, 2008, 179: 911-929. DOI:10.1111/j.1469-8137.2008.02503.x.
[3] 祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002: 8-12.
[4] 孙洪刚, 林雪峰, 陈益泰,等. 沿海地区森林风害研究综述[J]. 热带亚热带植物学报, 2010, 18(5): 577-585. DOI:10.3969/j.issn.1005-3395.2010.05.018. SUN H G, LIN XF, CHEN Y, et al. A review of forest wind damadge in the coastal areas[J]. Journal of Tropical and Subtropical Botany, 2010, 18(5): 577-585.
[5] 洪奕丰, 王小明, 周本智,等. 闽东沿海防护林台风灾害的影响因子[J]. 生态学杂志, 2012, 31(4): 781-786. HONG Y F, WANG X M, ZHOU B Z, et al. Farctors affecting the typhoon damage to coastal shelterbelt forests in eastern Fujian of East China[J].Chinese Journal of Ecology, 2012,31(4): 781-786.
[6] 吴志华, 李天会, 张华林,等. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 2010, 19(4): 166-175. DOI:1004-5759(2010)04-0166-10. WU Z H, LI T H, ZHANG H L, et al. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 2010,19(4): 166-175.
[7] 张樟德.桉树人工林的发展与可持续经营[J].林业科学, 2008, 44(7): 97-102. DOI:10.3321/j.issn.1001-7488.2008.07.017. ZHANG Z D. A review on development situation and sustainable management of eucalypt plantation[J]. Scientia Silvae Sinicae, 2008,44(7): 97-102.
[8] 罗建中, 谢耀坚, 曹加光,等. 2年生桉树杂交种生长与抗风的遗传变异研究[J]. 草业学报, 2009, 18(6): 91-97. LUO J Z, CAO JG, LU W H, et al. Genetic variation in 2-year Eucalypt hybrids' growth and typhoon resistance[J]. Journal of Grass Industry, 2009,18(6): 91-97.
[9] 曾龄英. 赤桉(Eucalyptus camaldulensis)[J]. 云南林业科技, 1996, 75(2): 57-61. ZENG L Y.Eucalyptus camaldulensis[J]. Yunnan Forestry Science and Technology, 1996, 75(2): 57-61.
[10] 徐建民, 白嘉雨, 陆钊华. 华南地区桉树可持续遗传改良与育种策略[J]. 林业科学研究, 2001, 14(6): 587-594. DOI:10.3321/j.issn.1001-1498.2001.06.001. XU J M, BAI J Y, LU Z H. Some sustainable strategies of improvement and breeding for Eucalyptus tree species in Southern China[J]. Forest Research, 2001,14(6):587-594.
[11 ]NORBDORG M, WEIGEL D. Next-generation genetics in plants[J]. Nature, 2008, 456(7223): 720-723. DOI:10.1038/nature07629n.
[12] NEALE D B, SAVOLAINEN O. Association genetics of complex traits in conifers[J]. Trends in Plant Science, 2004, 9(7): 325-330.DOI:10.1016/J.TPLANTS.2004.05.006.
[13] 杨小红, 严建兵, 郑艳萍, 等. 植物数量性状关联分析研究进展[J]. 作物学报, 2007, 33(4): 523-530. YANG X H, YAN J B, ZHENG Y P, et al. Reviews of association analysis for quantitative traits in plants[J]. Acta Agronomica Sinica, 2007, 33(4): 523-530.
[14] KEREM B, ROMMENS J M, BUCHANAN J A, et al. Identification of the cystic fibrosis gene: genetic analysis[J]. Science, 1989, 245: 1073-1080.
[15] BUCKLER E S, THORNSBERRY J M. Plant molecular diversity and applications to genomics[J]. Current Opinion in Plant Biology, 2002, 5(2): 107-111.
[16] 尚秀华, 罗建中, 张沛健,等.早期赤桉家系生长与抗风性遗传分析[J]. 分子植物育种, 2017, 15(5): 1918-1926. SHANG X H, LUO J Z, ZHANG P J, et al. Genetic analysis on early Eucalyptus camaldulensis growth and typhoon resistance[J]. Molecular Plant Breeding, 2017, 15(5): 1918-1926.
[17] 尚秀华, 谢耀坚, 张沛健,等. 40月生赤桉家系抗风性评价及选择[J]. 分子植物育种, 2017, 15(6): 2403-2411. SANG XH, XIE Y J, ZHANG P J, et al. Evaluation and selection of wind resistance for 40 months of Eucalyptus camaldulensis family[J]. Molecular Plant Breeding, 2017, 15(6): 2403-2411.
[18] 王睿, 刘卫东, 高灵, 等. 赤桉家系的抗风性状与选择[J]. 中南林业科技大学学报, 2014,34(11): 98-100, 106.DOI:10.3969/j.issn.1673.923X.2014.11.019. WANG R, LIU W D, GAO L, et al. Studied on wind resistance and family selection of Eucalyptus camaldulensis[J]. Journal of Central South University of Forestry & Technology, 2014, 34(11): 98-100, 106.
[19] 尚秀华.赤桉抗风特性及其重要性状的关联分析[D].北京:中国林业科学研究院,2017. SHANG X H. Study on wind resistance characteristics and association analysis of important traits in Eucalyptus camaldulensis[D]. Beijing: Chinese Academy of Forestry Science,2017.
[20] YU J M, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2):203-208.DOI:10.1038/ng1702.
[21] GUPTA P K, RUSTGI S, KULWAL P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects[J].Plant Molecular Biology, 2005, 57(4): 461-485. DOI:10.1007/s11103-005-0257-z.
[22] KLINE J B, MOORE D J, CLEVENGER C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav1-receptor binding site[J]. Mol Endocrinol, 2001, 15(5): 832-841. DOI:10.1210/mend.15.5.0631.
[23] HARRIS B P, STOKESBURY K D E. The spatial structure of local surfi-cial sediment characteristics on Georges Bank, USA[J]. Cont ShelfRes, 2010, 30(17): 1840-1853.DOI:10.1016/J.CSR.2010.08.011.
[24] CARDON L R, PALMER L J. Population stratification and spurious allelic association [J]. The Lancet, 2003, 361(9357): 598-604. DOI:10.1016/S0140-6736(03)12520-2.
[25] THORNSBERRY J M, GOODMAN M M, Doebley J, et al. Dwarf 8 polymorphisms associate with variation in flowering time[J]. Nature Genetics, 2001, 28(3):286-289. DOI:10.1038/90135.
[26] HANSEN M, KRAFT T, GANESTAM S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetics Research,2001, 77(1): 61-66.
[27] INGVARSSOM P K. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen(Populus tremula L, Salicaceae)[J]. Genetics, 2005, 169(2): 945-953. DOI: 10.1534/ genetics.104.034959.
[28] KRUTOYSKY K V, NEALE D B. Nucleotide diversity and linkage disequilibrium in cold-hardiness-and wood quality-related candidate genes in douglas fir[J]. Genetics, 2005,171(4):2029-2041. DOI:10.1534/genetics.044420.
[29] ARUMUGASUNDARAM S, GHOSH M, VEERASAMY S, et al. Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers[J]. PLoS One, 2011,6(12): e28252. DOI:10.1371/journal.pone.0028252.
[30] YU J, BUCKLER E S. Genetic association mapping and genome organization of maize[J]. Current Opinion in Biotechnology, 2006, 17(2): 155-160. DOI 10.1016/i.copbio.2006.003.
[31] 王丽萍, 孙国清, 梁亚军, 等. 棉花纤维品质性状与 SSR 标记的关联分析[J]. 中国农业科技导报, 2013, 15(4): 110-120. DOI:10.3969/j.issn.1008-0864.2013.04.18. WANG L P, SUN G Q, LIANG Y J, et al. Analysis of relation between cotton fiber quality and SSR marker [J]. Journal of Agricultural Science and Technology, 2013, 15(4): 110-120.

Last Update: 2018-07-27