我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

降香黄檀生长性状家系间变异与优良家系初选(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年04期
Page:
106-112
Column:
研究论文
publishdate:
2018-07-12

Article Info:/Info

Title:
Growth traits variation among families and preliminary selection of superior families in Dalbergia odorifera T. Chen
Article ID:
1000-2006(2018)04-0106-08
Author(s):
HONG Zhou1 LIU Fumei2 ZHANG Ningnan1YANG Zengjiang1XU Daping1*
1.Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; 2.The Experimental Centre of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 532600, China
Keywords:
Keywords:Dalbergia odorifera T. Chen familiy variation breeding value superior family selection
Classification number :
S722.3+3
DOI:
10.3969/j.issn.1000-2006.201711017
Document Code:
A
Abstract:
Abstract: 【Objective】The study aimed to assess germplasm of the threatened species Dalbergia odorifera, select families with superior growth traits, and provide a reference for early seedling selection. 【Method】 We investigated and analyzed growth traits(height, diameter at breast height(DBH)and stem volume)in two eight-year progeny tests conducted in Baishengyuan in Yangjiang City and in Zhenhai Forest Farm in Kaiping City, Guangdong Province, and selected superior families based on a statistical genetic analysis of growth traits. 【Result】At eight years, tree height, DBH and stem volume in Baishengyuan were 4.30 m, 6.31 cm, and 0.006 1 m3, respectively, and in Zhenhai they were 4.97 m, 6.07 cm, and 0.007 9 m3, respectively. In Baishengyuan, the phenotypic coefficients of variation in height, DBH and stem volume were 18.37%, 34.39% and 63.93%, respectively, and in Zhenhai they were 18.31%, 32.61% and 60.75%, respectively. Moreover, the individual heritabilities of these traits were 0.22-0.41, and family heritabilities were 0.34-0.54. High genetic correlation coefficients were observed among three growth traits at two sites, with correlation coefficients of approximately 0.9. Significant interactions between genotype and environment were observed for three growth traits. The Type B genetic correlation coefficients were 0.61, 0.53 and 0.51 for height, DBH and tree volume, respectively. We selected 10 families from 45 common families at two sites. At eight years old, the means of height, DBH and stem volume for the selected families were 5.06 m, 7.31 cm and 0.009 2 m3, respectively, which represented an increase above population means by 9.28%, 18.28% and 33.33%, and genetic gains of 3.37%, 6.24% and 12.86%, in each case for height, DBH and stem volume, respectively. Twelve plus trees were then selected from superior families, and showed increased values for average height(53.04%), DBH(73.42%)and tree volume(232.78%). The genetic gains from these twelve plus trees showed increases of 15.57%, 24.60% and 64.07% for height, DBH and tree volume, respectively. 【Conclusion】There were high genetic variations within and among germplasm families of D. odorifera, which provided abundant genetic resources for improvement of the species.

References

[1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京:科学出版社, 2006.
[2] 国家质量技术监督局. GB/T 18107—2000 红木[S]. 北京:国家标准出版社, 2000.
[3] 李桂兰, 徐峰, 罗建举, 等. 海南香枝木与越南香枝木木材构造特征比较解剖研究[J]. 基因组学与应用生物学, 2008, 27(2): 154-157. LI G L, XU F, LUO J J, et al. Comparative anatomical research on the wood structure between Dalbergia odorifera T. Chen and D.rimosa Roxb [J]. Genomics and Applied Biology, 2008, 27(2): 154-157.
[4] YU X, WANG W, YANG M. Antioxidant activities of compounds isolated from Dalbergia odorifera T. Chen and their inhibition effects on the decrease of glutathione level of rat lens induced by UV irradiation[J]. Food Chemistry, 2007, 104(2): 715-720. DOI:10.1016/j.foodchem.2006.10.081.
[5] WRIGHT J W. Introduction to forest genetics [M]. New York: Academic Press, 1976: 427-438.
[6] 南京林产工业学院. 树木遗传育种学[M]. 北京:科学出版社, 1980.
[7] 林思京. 降香黄檀不同家系测定试验初报[J]. 福建林业科技, 2009, 36(4): 113-116. DOI:10.3969/j.issn.1002-7351.2009.04.026. LIN S J. Preliminary study on Dalbergia odorifera T. Chen different families tests [J]. Journal of Fujian Forestry Science and Technology, 2009, 36(4): 113-116.
[8] 蔡金清. 降香黄檀栽培技术与引种试验初报[J]. 林业建设, 2006(4): 8-9. CAI J Q. Preparatory experimentation report on cultivating technique of Dalbergia odorifera [J].Forestry Construction, 2006(4): 8-9.
[9] 陈绍华. 降香黄檀家系测定林遗传性状与优良家系复选[J]. 福建林业科技, 2015, 42(4): 83-86. DOI:10.13428/j.cnki.fjlk.2015.04.018. CHEN S H. The growth performance and excellent choice in different families of Dalbergia odorifera [J].Journal of Fujian Forestry Science and Technology, 2015, 42(4): 83-86.
[10] 郭文福, 贾宏炎. 降香黄檀在广西南亚热带地区的引种[J]. 福建林业科技, 2006, 33(4): 152-155. DOI:10.3969/j.issn.1002-7351.2006.04.036. GUO W F, JIA H Y. The introduction of Dalbergia odorifera in southern subtropical area of Guangxi [J].Journal of Fujian Forestry Science and Technology, 2006, 33(4): 152-155.
[11] 叶水西. 闽南丘陵山地降香黄檀不同海拔造林初步效果研究[J]. 海峡科学, 2008(12): 95-96. YE S X. Preparatory study on forestation of Dalbergia odorifera in different elevation in mountainous region in Southern Fujian [J]. Straits Science, 2008(12): 95-96.
[12] 陈英强. 降香黄檀不同家系的生长性状测定与初步选择[J]. 福建林业科技, 2015, 42(2): 84-89. DOI:10.13428/j.cnki.fjlk.2015.02.019. CHEN Y Q. Research on introduction experiment of Dalbergia odorifera T.Chen superior families selection [J]. Journal of Fujian Forestry Science and Technology, 2015, 42(2): 84-89.
[13] 孟慧, 杨云, 冯锦东. 降香黄檀引种栽培现状与发展[J]. 广东农业科学, 2010, 37(7): 79-80. MENG H, YANG Y, FENG J D. The development and cultivation of Dalbergia odorifera [J]. Guangdong Agricultural Sciences, 2010, 37(7): 79-80.
[14] 中华人民共和国农林部.立木材积表 LY 208-77[M]. 北京: 技术标准出版社, 1978.
[15] NAMKOONG G. Introduction to quantitative genetics in forestry [M]. London: Castle House Publications, 1979.
[16] WEIR B S, THOMPSON J N, THODAY J M. Quantitative genetic variation [J]. Biometrics, 1980, 36(3): 561. DOI:10.2307/2530231.
[17] GILMOUR A, GOGEL B, CULLIS B, et al. ASReml user guide release 3.0[EB/OL].
[2011-12-02]. http://www.rsni.co.uk.
[18] FALCONER D, MACHAY T. Introduction to quantitative genetics[M]. 4th ed. New York: Longman Group Ltd. 1996.
[19] 顾万春. 统计遗传学[M]. 北京: 科学出版社, 2004. GU W C. Statistical genetics [M]. Beijing: Science Press, 2004.
[20] WHITE T L, HOMAS A W, NEALE D B. Forest genetics [M]. Wallingford UK: CAB International, 2007.
[21] 杨培华, 樊军锋, 刘永红,等. 油松优良家系及单株配合选择研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10):67-71. DOI:10.3321/j.issn:1671-9387.2006.10.014. YANG P H, FAN J F, LIU Y H, et al. Combination selection of excellent families and plus trees of Pinus tabuliformis[J]. Journal of Northwest Sci-Tech university of Agriculture and Forestry, 2006, 34(10):67-71.
[22] 黄晓春, 周诚. 杉木优良家系的选择研究[J]. 南方林业科学, 1992(5):8-13. HUANG X C. ZHOU C. Excellent families selection of Cunninghamia lanceolata(Lamb.)Hook.[J]. South China Forestry Science,1992(5):8-13.
[23] 徐大平, 丘佐旺. 南方主要珍贵树种栽培技术[M]. 广州:广东科技出版社, 2013. XU D P, QIU Z W. Cultivation techniques of valuable tree species in south China [M]. Guangzhou: Guangdong Science and Technology Press, 2013.
[24] 续九如. 林木数量遗传学[M]. 北京:高等教育出版社, 2006. XU J R. Quantitative genetics in Forestry [M]. Beijing: Higher Education Press, 2006.
[25] 马育华. 植物育种的数量遗传学基础[M].南京:江苏科学技术出版社, 1982. MA Y H. Quantitative genetics in plant breeding [M]. Nanjing: Jiangsu Science and Technology Press, 1982.

Last Update: 2018-07-27