我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于多特征的高光谱遥感土地利用信息提取(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年04期
Page:
141-147
Column:
研究论文
publishdate:
2018-07-12

Article Info:/Info

Title:
Land use information extraction using multiple features derived from hyperspectral images
Article ID:
1000-2006(2018)04-0141-07
Author(s):
LIU Xiaoshuang1 GONG Zhiwen2 WU Jian3
1. Northwest Institute of Forest Inventory, Planning and Design, SFA, Xi'an 710048, China; 2. College of Economics and Management,Northwest A & F University, Yangling 712100, China; 3. Geography Information and Tourism College, Chuzhou University, Chuzhou 239000, China
Keywords:
Keywords:hyperspectral textural features spatial information land use remote sensing classification accuracy
Classification number :
TP79
DOI:
10.3969/j.issn.1000-2006.201705029
Document Code:
A
Abstract:
Abstract: 【Objective】To reduce noise and improve land use classification accuracy, we need to explore a classification method that combines texture and spatial information. 【Method】Using remote sensing images obtained from hyperspectral imaging spectrometers in Henan Zhenping and learning from the classification of a decision tree, a hyperspectral remote sensing classification method combining spectrum, texture, and spatial information was used. The land use type was initially determined by extracting the spectral features, and then hierarchically determined in detail by extracting the texture features and vegetation, which was based on spatial information. Finally, the accuracy of the classification of various land use types was verified by ground test points, and the extraction efficiency of different methods was compared. 【Result】The land-type layered-extraction system combined many characteristics, adopted various band spectral reflectances to classify large ground classes, used textural features to classify ground classes with smaller spectral differences, and then classified vegetation based on spatial information. The total classification accuracy of the method combining texture and spatial information was 86.7%, which was 13.3% higher than the total accuracy of maximum likelihood classification. 【Conclusion】The remote sensing classification method that combined hyperspectral and texture features, and spatial information can effectively reduce noise and improve the classification accuracy. This provides a reference for the study of land use classification.

References

[1] 邓贤明, 苗放, 翟涌光, 等. 基于形态学的两种高光谱目标探测改进算法[J]. 中山大学学报(自然科学版), 2017, 56(1): 151-160. DOI: 10.13471/j.cnki.acta.snus.2017. 01. 024. DENG X M, MIAO F, ZHAI Y G, et al. Two modified target detection algorithms based on morphology for hyperspectral imagery[J]. Acta Scientiarum Naturalum Universitatis Sunyatseni, 2007, 56(1):151 -160.
[2] 高孝杰, 简季, 戴晓爱, 等. 基于Frechet距离的光谱曲线匹配应用分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147. GAO X J, JIAN J, DAI X A, et al. Spectral curve matching application analysis based on frechet distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):408-414.
[3] 李杰, 万幼川. 基于光谱特征参量化的高光谱影像精细分类[J]. 地理空间信息, 2015, 13(4): 86-88. DOI: 10.3969/j.issn.1672-4623.2015.04.031. LI J, WAN Y C. Fine classification of hyperspectral image based on spectral features parametrization[J]. Geospatial Information, 2015, 13(4): 86-88.
[4] 樊利恒, 吕俊伟, 邓江生. 基于分类器集成的高光谱遥感图像分类方法[J]. 光学学报, 2014, 34(9): 91-101. DOI: 10.3788/AOS201434.0910002. FAN L H, LÜ J W, DENG J S. Classification of hyperspectral remote sensing images based on bands grouping and classification ensembles [J]. Acta Ootica Sinica, 2014, 34(9):91-101.
[5] 林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12): 3358-3362. DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05. LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectal characteristic discrimination of leaves of different desert tree species[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3358-3362.
[6] 吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153. DOI: 1002-6819(2012)-05-0150-04. WU J, PENG D L. Vegetation classification technology of hyperspectral remote sensing based on spatial information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153.
[7] JAY S, GUILLAUME M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data[J]. Remote Sensing of Environment, 2014, 147(18):121-132. DOI:10.1016/j.rse.2014.01.026.
[8] 秦进春, 余旭初, 张鹏强, 等. 一种基于核偏最小二乘法的高光谱影像最佳波段选择方法[J]. 测绘科学技术学报, 2013, 30(2): 172-176. DOI: 1673-6338(2013)02-0172-05. QIN J C, YU X C, ZHANG P Q, et al. An optimal band selection method for hyperspectral imagery based on kernel partial least squares[J]. Journal of Geomatics Science and Technology, 2013, 30(2): 172-176.
[9] 魏祥坡, 余旭初, 付琼莹, 等. 光谱角余弦与相关系数测度组合的光谱匹配分类方法与实践[J]. 地理与地理信息科学, 2016, 32(3): 29-33. DOI: 1672-0504(2016)03-0029-05. WEI X P, YU X C, FU Q Y, et al. Spectral matching classification approach and experiment combined with spectral angle cosine and spectral correlation coefficient[J] Geography and Geo-Information Science, 2016, 32(3):29-33.
[10] 焦洪赞, 王少宇, 彭正洪. 基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法[J]. 武汉大学学报(工学版), 2016, 49(6): 937-943. DOI: 10.14188/j.1671-8844.2016-06-023. JIAO H Z, WANG S Y, PENG Z H. A spectral similarity matching classifier based on conditional random field for hyperspectral remote sensing imagery [J]. Engineering Journal of Wuhan University, 2016, 49(6): 937-943.
[11] MAULIK U, CHAKRABORTY D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77(3):66-78. DOI:10.1016/j.isprsjprs.2012.12.003.
[12] LIN Z L, YAN L M. A support vector machine classifier based on a new kemel function model for hyperspectral data[J]. GIScience and Remote Sensing, 2015, 53(1):1-17. DOI:10.1080/15481603.2015.1114199.
[13] PATRA S, BRUZZONE L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-7910. DOI:10.1109/TGRS.2014.2305516.
[14] BIGDELI B, SAMADZADEGAN F, REINARTZ P. A decision fusion method based on multiple support vector machine system for fusion of hyperspectral and LIDAR data[J]. International Journal of Image and Data Fusion, 2014, 5(3):196-209. DOI:10.1080/19479832.2014.919964.
[15] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16): 135-142. DOI: 1002-6819(2016)-16-0135-08. LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf PAD value based on hyperspectrum and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135-142.
[16] 周亚敏, 张荣群, 马鸿元, 等. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40. DOI: 10.6046/gtzyyg.2016. 02. 06. ZHOU Y M, ZHANG R Q, MA H Y, et al. Retrieving of salt lake mineral ions salinity from hyper-spectral data based on BP neural network[J]. Remote Sensing for Land and Resources, 2016, 28(2): 34-40.
[17] CHENG B Y, LIU Q, LI X W, et al. Building simplification using back propagation neural networks: a combination of cartographer's expertise and raster-based local perception[J]. GIScience and Remote Sensing, 2013, 50(5):527-542. DOI:10.1080/15481603.2013.823748.
[18] ZHONG Y F, ZHANG L P, GONG W. Unsupervised remote sensing image classification using an artificial immune network[J]. International Journal of Remote Sensing, 2011, 32(19):5461-5483. DOI:10.1080/01431161.2010.502155.
[19] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-249. DOI: 1007-4619(2016)02-0236-21. DU P J, XIA J S, XUE Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256.
[20] 朱济帅, 尹作霞, 谭琨, 等. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130. DOI: 10.11873/j.issn.1004-0323.2016.6.1122. ZHU J S, YIN Z X, TAN K, et al. Semi-supervised tri-training hyperspectral image classification approach based on spatial neighborhood information [J]. Remote Sensing Technology and Application, 2016, 31(6): 1122-1130.
[21] 王彩玲, 王洪伟, 胡炳樑, 等. 一种新的空谱联合探测高光谱影像目标探测算法[J]. 光谱学与光谱分析, 2016, 36(4): 1163-1169. DOI: 10.3964/j.issn.1000-0593(2016)04-1163-07. WANG C L, WANG H W, HU B L, et al. A new spectral-spatial algorithm method for hyperspectral image target detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1163-1169.
[22] 程志会, 谢福鼎. 基于空间特征与纹理信息的高光谱图像半监督分类[J]. 测绘通报, 2016, 54(12): 56-59. DOI: 10.13474/j.cnki.11-2246.2016.0401. CHENG Z H, XIE F D. Semi-supervised classification for hyperspectral image based on spatial features and texture information[J]. Bulletin of Surveying and Mapping, 2016, 54(12): 56-59.
[23] 王增茂, 杜博, 张良培, 等. 基于纹理特征和形态学特征融合的高光谱影像分类法[J]. 光子学报, 2014, 43(8): 116-123. DOI: 10.3788/gzxb20144308.0810002. WANG Z M, DU B, ZHANG L P, et al. Based on texture feature and extend morphological profile fusion for hyperspectral image classification[J]. Acta Photonica Sinica, 2014, 43(8): 116-123.
[24] 余旭初, 谭熊, 付琼莹, 等. 联合纹理和光谱特征的高光谱影像多核分类方法[J]. 测绘通报, 2014, 52(9): 38-42. DOI: 10.13474/j.cnki.11-2246.2014.0289. YU X C, TAN X, FU Q Y, et al. Combined texture-spectral feature for multiple kernel classification of hyperspectral images[J]. Bulletin of Surveying and Mapping, 2014, 52(9): 38-42.
[25] 胡玉福, 邓良基, 匡先辉, 等. 基于纹理特征的高分辨率遥感图像土地利用分类研究[J]. 地理与地理信息科学, 2011, 27(5): 42-45. HU Y F, DENG L J, KUANG X H, et al. Study on land use classification of high resolution remote sensing image based on texture feature[J]. Geography and Geo-Information Science, 2011, 27(5): 42-45.
[26] 陈波, 胡玉福, 喻攀, 等. 基于纹理和地形辅助的山区土地利用信息提取研究[J]. 地理与地理信息科学, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001. CHEN B, HU Y F, YU P, et al. Research on information extraction of land use in mountainous areas based on texture and terrain [J]. Geography and Geo-Information Science, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001.
[27] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610-621.
[28] CRISTO A, FISHER K, PEREZ R M, et al. Optimization of the multi-spectral euclidean distance calculation for FPGA-based spaceborne systems[J]. Aerospace Science and Technology, 2014, 32(1):1-9. DOI:10.1016/j.ast.2013.12.013.
[29] LUO G C, CHEN G Y, TIAN L, et al. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising[J]. Canadian Journal of Remote Sensing, 2016, 42(2):106-116. DOI:10.1080/07038992.2016.1160772.

Last Update: 2018-07-27