我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

地衣和地衣酸与岩石矿物风化及其机制研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年04期
Page:
169-177
Column:
综合述评
publishdate:
2019-07-24

Article Info:/Info

Title:
Research progress on lichens, lichenic acids, rock and mineral weathering and its mechanisms
Article ID:
1000-2006(2019)04-0169-09
Author(s):
SONG Jinfeng1 RU Jiaxin1 ZHANG Hongguang2 CAO Kai3 CUI Xiaoyang1*
(1. Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China; 2. Maoershan Forest Research Station, Northeast Forestry University, Harbin 150040, China; 3. Daqing Wanfang Economic Development Corporation, Daqing 163411, China)
Keywords:
lichens lichenic acids rock and mineral biological weathering complexation
Classification number :
S718.5; S714.1
DOI:
10. 3969/ j. issn. 1000-2006. 201806030
Document Code:
A
Abstract:
Weathering of rock and minerals is one of the most important geochemical phenomena that occurs on the earth’s surface, among which biological weathering is considered to be important. The role of lichens and lichenic acids secreted from lichens on biological weathering of rock and minerals was summarized in this paper. We also discussed the mechanisms of weathering. Our objective was to provide the theoretical basis for the scientific evaluation of the important functions of lichens and lichenic acids in forest ecosystems(especially for the cold temperate). Lichens can significantly induce and accelerate the weathering process of rock and minerals through physical and chemical mechanisms; Biophysical and biochemical weathering occur at the same time, of which the latter is more important. During the course of lichen-induced rock and mineral weathering, lichenic acids are secreted by lichens specifically on their symbiotic fungi or algae; these acids are the main drivers behind rock and mineral weathering both in the field and in the laboratory. Their weathering mechanisms include proton promotion and complexation effects. Lichenic acids, especially, can form soluble chelates with the base ions in rock and minerals, thus leading to dissolution of rock and minerals.

References

[1] 吴秋芳, 胡海波, 张鑫. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 81-88. DOI:10.3969/j.issn.1000-2006.201610049. WU Q F, HU H B, ZHANG X. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1): 81-88.
[2] 严君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2): 341-347. YAN J, HAN X Z, WANG S Q, et al. Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 341-347.
[3] PAYETTE S, DELWAIDE A. Tamm review: the North-American lichen woodland[J]. Forest Ecology and Management, 2018, 417: 167-183. DOI:10.1016/j.foreco.2018.02.043.
[4] MARQUES J, GONCALVES J, OLIVEIRA C, et al. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments[J]. Ecology, 2016, 97(10): 2844-2857. DOI:10.1002/ecy.1525.
[5] RIVAS T, POZO-ANTONIO J S, LÓPEZ DE SILANES M E, et al. Laser versus scalpel cleaning of crustose lichens on granite[J]. Applied Surface Science, 2018, 440: 467-476. DOI:10.1016/j.apsusc.2018.01.167.
[6] HOFFLAND E, KUYPER T W, WALLANDER H, et al. The role of Fungi in weathering[J]. Frontiers in Ecology and the Environment, 2004, 2(5): 258. DOI:10.2307/3868266
[7] FAVERO-LONGO S E, GIRLANDA M, HONEGGER R, et al. Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres[J]. Mycological Research, 2007, 111(4): 473-481. DOI:10.1016/j.mycres.2007.01.013.
[8] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila uplands(Calabria, southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018.
[9] LÁZARO R, CANTÓN Y, SOLÉ-BENET A, et al. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands(SE Spain)and its landscape effects[J]. Geomorphology, 2008, 102(2): 252-266. DOI:10.1016/j.geomorph.2008.05.005.
[10] 杨琳璐, 王中生, 周灵燕, 等. 苔藓和地衣对环境变化的响应和指示作用[J]. 南京林业大学学报(自然科学版), 2012, 36(3): 137-143. DOI:10.3969/j.issn.1000-2006.2012.03.028. YANG L L, WANG Z S, ZHOU L Y, et al. Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(3): 137-143.
[11] 李莎, 李福春, 程良娟. 生物风化作用研究进展[J]. 矿产与地质, 2006, 20(6): 577-582. DOI:10.3969/j.issn.1001-5663.2006.06.001. LI S, LI F C, CHENG L J. Recent development in bio-weathering research[J]. Mineral Resources and Geology, 2006, 20(6): 577-582.
[12] 范海兰, 谢安强, 申超, 等. 短葶山麦冬内生真菌分离鉴定及抗氧化活性[J]. 北华大学学报(自然科学版), 2017, 18(1): 106-109. DOI:10.11713/j.issn.1009-4822.2017.01.025. FAN H L, XIE A Q, SHEN C, et al. Isolation, identification and oxidant activity of endophytic Fungi from Liriope muscari (Decne.)bailey[J]. Journal of Beihua University(Natural Science), 2017, 18(1): 106-109.
[12] FISK M R, POPA R, MASON O U, et al. Iron-magnesium silicate bioweathering on earth(and mars?)[J]. Astrobiology, 2006, 6(1): 48-68. DOI:10.1089/ast.2006.6.48.
[14] HOFFLAND E, GIESLER R, VAN BREEMEN N, et al. Feldspar tunneling by Fungi along natural productivity gradients[J]. Ecosystems, 2003, 6(8): 739-746. DOI:10.1007/s10021-003-0191-3.
[15] VINGIANI S, TERRIBILE F, ADAMO P. Weathering and particle entrapment at the rock-lichen interface in Italian volcanic environments[J]. Geoderma, 2013, 207/208: 244-255. DOI:10.1016/j.geoderma.2013.05.015.
[16] BEHERA B C, VERMA N, SONONE A, et al. Experimental studies on the growth and usnic acid production in “lichen” Usnea ghattensis in vitro[J]. Microbiological Research, 2006, 161(3): 232-237. DOI:10.1016/j.micres.2005.08.006.
[17] KOCH N M, DE AZEVEDO MARTINS S M, LUCHETA F, et al. Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rainforest[J]. Ecological Indicators, 2013, 34: 22-30. DOI:10.1016/j.ecolind.2013.04.012.
[18] VANNINI A, CONTARDO T, PAOLI L C, et al. Application of commercial biocides to lichens: Does a physiological recovery occur over time?[J]. International Biodeterioration & Biodegradation, 2018, 129: 189-194. DOI:10.1016/j.ibiod.2018.02.010.
[19] 陈杰, 龚子同, HANS P B, 等. 地衣对建筑物的生物破坏作用[J]. 环境污染治理技术与设备, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012. CHEN J, GONG Z T, HANS P B, et al. Biodeterioration of constructions induced by lichens[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012.
[20] JACKSON T A. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment[J]. Geoderma, 2015, 251/252: 78-91. DOI:10.1016/j.geoderma.2015.03.012
[21] ZAMBELL C B, ADAMS J M, GORRING M L, et al. Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux[J]. Chemical Geology, 2012, 291: 166-174. DOI:10.1016/j.chemgeo.2011.10.009.
[22] GADD G M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by Fungi, bioweathering and bioremediation[J]. Mycological Research, 2007, 111(1): 3-49. DOI:10.1016/j.mycres.2006.12.001.
[23] MCILROY DE LA ROSA J P, WARKE P A, SMITH B J. The effects of lichen cover upon the rate of solutional weathering of limestone[J]. Geomorphology, 2014, 220: 81-92. DOI:10.1016/j.geomorph.2014.05.030.
[24] 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2006. SUN X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2006.
[25] CHEN J, GONG Z T. Role of lichens in weathering and soil-forming processes in fildes peninsula, Antarctic[J]. Pedosphere, 1995, 5: 305-314.
[26] VARADACHARI C, BARMAN A K, GHOSH K. Weathering of silicate minerals by organic acids II. Nature of residual products[J]. Geoderma, 1994, 61(3/4): 251-268. DOI:10.1016/0016-7061(94)90052-3.
[27] WIERZCHOS J. Morphological and chemical features of bioweathered granitic biotite induced by lichen activity[J]. Clays and Clay Minerals, 1996, 44(5): 652-657. DOI:10.1346/ccmn.1996.0440507.
[28] STRETCH R C, VILES H A. The nature and rate of weathering by lichens on lava flows on Lanzarote[J]. Geomorphology, 2002, 47(1): 87-94. DOI:10.1016/s0169-555x(02)00143-5.
[29] 李波, 林中文, 孙汉董. 四种国产地衣的化学成分[J]. 云南植物研究, 1991,13(1): 81-84. LI B, LIN Z W, SUN H D. The chemical constituents of four lichens from China[J]. Acta Botanica Yunnanica, 1991,13(1): 81-84.
[30] HAUCK M, BÖNING J, JACOB M, et al. Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum[J]. Environmental and Experimental Botany, 2013, 85: 58-63. DOI:10.1016/j.envexpbot.2012.08.011.
[31] CAVIGLIA A M, NICORA P, GIORDANI P, et al. Oxidative stress and usnic acid content in Parmelia caperata and Parmelia soredians(Lichenes)[J]. Il Farmaco, 2001, 56(5/6/7): 379-382. DOI:10.1016/S0014-827X(01)01090-4.
[32] PURVIS O W, ELIX J A, GAUL K L. The occurrence of copper-psoromic acid in lichens from cupriferous substrata[J]. The Lichenologist, 1990, 22(3): 345-354. DOI:10.1017/s002428299000038x.
[33] BJELLAND T, THORSETH I H. Comparative studies of the lichen-rock interface of four lichens in Vingen, Western Norway[J]. Chemical Geology, 2002, 192(1/2): 81-98. DOI:10.1016/s0009-2541(02)00193-6.
[34] PAWLIK-SKOWRONSKA B, BACKOR M. Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats[J]. Environmental and Experimental Botany, 2011, 72(1): 64-70. DOI:10.1016/j.envexpbot.2010.07.002.
[35] ADAMO P. Weathering of rocks and neogenesis of minerals associated with lichen activity[J]. Applied Clay Science, 2000, 16(5/6): 229-256. DOI:10.1016/s0169-1317(99)00056-3.
[36] CHEN J, BLUME H P, BEYER L. Weathering of rocks induced by lichen colonization: a review[J]. Catena, 2000, 39(2): 121-146. DOI:10.1016/s0341-8162(99)00085-5.
[37] AROCENA J M, SIDDIQUE T, THRING R W, et al. Investigation of lichens using molecular techniques and associated mineral accumulations on a basaltic flow in a Mediterranean environment[J]. Catena, 2007, 70(3): 356-365. DOI:10.1016/j.catena.2006.11.006.
[38] SCARCIGLIA F, LE PERA E, CRITELLI S. Weathering and pedogenesis in the Sila grande massif(calabria, south Italy): from field scale to micromorphology[J]. Catena, 2005, 61(1): 1-29. DOI:10.1016/j.catena.2005.02.001.
[39] STILLINGS L L, DREVER J I, BRANTLEY S L, et al. Rates of feldspar dissolution at pH 3-7 with 0-8 m M oxalic acid[J]. Chemical Geology, 1996, 132(1/2/3/4): 79-89. DOI:10.1016/S0009-2541(96)00043-5.
[40] 阿不都·阿巴斯,吴继农. 新疆地衣[M]. 乌鲁木齐: 新疆科技卫生出版社, 1998.
[41] 吴金陵. 中国地衣植物图鉴[M]. 北京: 中国展望出版社. 1987. WU J L. Chinese lichen plant Atlas[M]. Beijing: China Prospect Publishing House. 1987.
[42] ABDEL-HAMEED M, BERTRAND R L, PIERCEY-NORMORE M D, et al. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus[J]. Fungal Biology, 2016, 120(3): 306-316. DOI:10.1016/j.funbio.2015.10.009.
[43] BARKER W W, BANFIELD J F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities[J]. Chemical Geology, 1996, 132(1/2/3/4): 55-69. DOI:10.1016/s0009-2541(96)00041-1.
[44] BJERKE J, ELVEBAKK A, DOMINGUEZ E, et al. Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen[J]. Phytochemistry, 2005, 66(3): 337-344. DOI:10.1016/j.phytochem.2004.12.007.
[45] EDWARDS H G M, NEWTON E M, WYNN-WILLIAMS D D. Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid[J]. Journal of Molecular Structure, 2003, 651/652/653: 27-37. DOI:10.1016/s0022-2860(02)00626-9.
[46] HOLDER J M, WYNN-WILLIAMS D D, RULL PEREZ F, et al. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: acarospora from the Antarctic and Mediterranean[J]. New Phytologist, 2000, 145(2): 271-280. DOI:10.1046/j.1469-8137.2000.00573.x.
[47] BIALONSKA D, DAYAN F E. Chemistry of the lichen hypogymnia physodes transplanted to an industrial region[J]. Journal of Chemical Ecology, 2005, 31(12): 2975-2991. DOI:10.1007/s10886-005-8408-x.
[48] 李艺明, 杨世忠, 牟伯中. 一种甲酯化n-C16-地衣素的分离及结构鉴定[J]. 化学通报, 2009(11): 1008-1012. DOI:10.14159/j.cnki.0441-3776.2009.11.012. LI Y M, YANG S Z, MOU B Z. Isolation and structural characterization of esterified n-C16-lichenysin with Methanol[J]. Chemistry Bulletin, 2009(11): 1008-1012.
[49] JIE C, BLUME H P. Rock-weathering by lichens in Antarctic: patterns and mechanisms[J]. Journal of Geographical Sciences, 2002, 12(4): 387-396. DOI:10.1007/bf02844595.
[50] HAUCK M, JÜRGENS S R. Usnic acid controls the acidity tolerance of lichens[J]. Environmental Pollution, 2008, 156(1): 115-122. DOI:10.1016/j.envpol.2007.12.033.
[51] SMITS M M, HERRMANN A M, DUANE M, et al. The fungal-mineral interface: challenges and considerations of micro-analytical developments[J].Fungal Biology Reviews, 2009, 23(4): 122-131. DOI:10.1016/j.fbr.2009.11.001.
[52] SEAWARD M R D, EDWARDS H G M. Biological origin of major chemical disturbances on ecclesiastical architecture studied by fourier transform raman spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28(9): 691-696. DOI:10.1002/(sici)1097-4555(199709)28:9<691::aid-jrs161>3.0.co; 2-4.
[53] FAVERO-LONGO S E, CASTELLI D, SALVADORI O, et al. Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment[J]. International Biodeterioration & Biodegradation, 2005, 56(1): 17-27. DOI:10.1016/j.ibiod.2004.11.006.
[54] APOLLARO C, ACCORNERO M, MARINI L, et al. The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif(Calabria, Southern Italy)[J]. Applied Geochemistry, 2009, 24(5): 957-979. DOI:10.1016/j.apgeochem.2009.02.026.
[55] TU S X, GUO Z F, SUN J H. Effect of oxalic acid on potassium release from typical Chinese soils and minerals [J]. Pedosphere, 2007, 17(4): 457-466. DOI:10.1016/S1002-0160(07)60055-1.
[56] 周跃飞, 陆现彩, 王汝成, 等. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23. DOI:10.3321/j.issn:1001-8166.2008.01.003. ZHOU Y F, LU X C, WANG R C, et al. Recent progress in the study of microbiomineralogy of feldspar[J]. Advances in Earth Science, 2008, 23(1): 17-23.
[57] SHOTYK W, NESBITT H W. Incongruent and congruent dissolution of plagioclase feldspar: effect of feldspar composition and ligand complexation[J]. Geoderma, 1992, 55(1/2): 55-78. DOI:10.1016/0016-7061(92)90005-r.
[58] EICK M J, GROSSL P R, GOLDEN D C, et al. Dissolution of a lunar basalt simulant as affected by pH and organic anions[J]. Geoderma, 1996, 74(1/2): 139-160. DOI:10.1016/s0016-7061(96)00055-9.
[59] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila Uplands(Calabria, Southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018.
[60] HUTCHENS E, VALSAMI-JONES E, MCELDOWNEY S, et al. The role of heterotrophic bacteria in feldspar dissolution-an experimental approach[J]. Mineralogical Magazine, 2003, 67(6): 1157-1170. DOI:10.1180/0026461036760155.
[61] ISKANDAR I K, SYERS J K. Metal-complex formation by lichen compounds[J]. Journal of Soil Science, 1972, 23(3): 255-265. DOI:10.1111/j.1365-2389.1972.tb01658.x.
[62] ASCASO C, GALVAN J. Studies on the pedogenic action of lichen acids[J]. Pedobiologia, 1976, 16: 321-331.
[63] ASCASO C, SANCHO L G, RODRIGUEZ-PASCUAL C. The weathering action of saxicolous lichens in maritime Antarctica[J]. Polar Biology, 1990, 11(1): 33-39. DOI:10.1007/bf00236519.
[64] DREVER J I, VANCE G F. Role of soil organic acids in mineral weathering processes[C]//PITTMAN E D, LEWAN M D. Organic Acids in Geological Processes. New York: Springer, 1994.
[65] WELCH S A, ULLMAN W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry[J]. Geochimica Et Cosmochimica Acta, 1993, 57(12): 2725-2736. DOI:10.1016/0016-7037(93)90386-b.
[66] FINLAY R, WALLANDER H, SMITS M, et al. The role of Fungi in biogenic weathering in boreal forest soils[J]. Fungal Biology Reviews, 2009, 23(4): 101-106. DOI:10.1016/j.fbr.2010.03.002.
[67] WINKELMANN G. Ecology of siderophores with special reference to the fungi[J]. BioMetals, 2007, 20(3/4): 379-392. DOI:10.1007/s10534-006-9076-1.
[67] HOLMSTRÖM S J M, LUNDSTRÖM U S, FINLAY R D, et al. Siderophores in forest soil solution[J]. Biogeochemistry, 2004, 71: 247-258.
[69] ELBERT W, WEBER B, BURROWS S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462. DOI:10.1038/ngeo1486.

Last Update: 2019-07-22