我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

大花序桉群体适应性相关的SSR位点(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年05期
Page:
59-66
Column:
研究论文
publishdate:
2019-09-20

Article Info:/Info

Title:
SSR loci associated with population adaptation in Eucalyptus cloeziana
Article ID:
1000-2006(2019)05-0059-08
Author(s):
WANG Li1LI Changrong2LI Fagen1ZHOU Changpin1WENG Qijie1 L? Jiabin1CHEN Jianbo2CHEN Jiancheng3GAN Siming 12?
(1. Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; 2. Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation & Key Laboratory of Central South Fast-growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning 530002, China; 3. Yulin Forestry Research Institute, Rongxian 537501, China)
Keywords:
Eucalyptus cloeziana SSR marker climatic factor positive selection population adaptation isolation by distance (IBD)
Classification number :
S718. 51
DOI:
10.3969/j.issn.1000-2006.201808044
Document Code:
A
Abstract:
【Objective】 Genomic loci that are significantly associated with population adaptation were detected in Eucalyptus cloeziana F. Muell. populations to obtain useful molecular information for germplasm conservation and utilization.【Method】 Seven northern and southern populations of E. cloeziana were analyzed using 84 simple sequence repeats (SSR) markers [29 genomic SSRs and 55 expressed sequence tag (EST) derived SSRs]. Isolation by distance (IBD) among populations was determined using Mantel test. Outlier loci of F-statistics of between-population differentiation (Fst) and their significant allelic associations with habitat climatic variables were investigated for all the SSR loci, with further functional annotation of the significantly associated loci against the NCBI non-redundant protein database. 【Result】 IBD was revealed between the northern and southern populations of E. cloeziana, and the clustering analysis based on 19 climatic variables also resulted in division of the northern and southern populations into independent groups, suggesting the climatic effect on driving the population divergence. A total of 39 Fst outliers (46. 4%) were identified as selective loci. Specifically, the software LOSITAN detected 12 positive and 17 balancing selection loci. Six alleles from five outlier loci were identified with spatial analysis methods, each associated significantly with one or more climatic factors(P < 0. 001) and showed dramatic difference in allelic frequency between the northern and southern populations.Among the six significant alleles, Embra6-118 bp was associated with the minimum temperature of the coldest month (Tmcm), with the locus Embra6 functionally annotated as basic helix-loop-helix (bHLH) transcript factor bHLH155.The allele Embra20-121 bp was associated with the precipitation of the warmest quarter ( Pwq ), with Embra20 functionally annotated as sucrose transporters. EUCeSSR676-168 bp was associated with Tmcm, Pwq, the mean annual temperature (Tma) and the minimum temperature of the warmest month (Tmwm), with the locus functionally annotated as photosystem II stability/ assembly factor HCF136. However, the two other significant markers EUCeSSR298 and EUCeSSR1009 were of unknown function. 【Conclusion】 The divergence between the northern and southern populations of E.cloeziana was strongly related with historical climate, and there might be glacial refugia in the northern and southern zones during the Quaternary. The marked difference in the frequency of climate-associated SSR alleles between the northern and southern populations provides molecular evidence for positive selection oriented climatic adaptation in E.cloeziana.

References

[1] DALAL R C, ALLEN D E, LIVESLEY S J, et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes:a review[J]. Plant and Soil, 2008, 309(1/2): 43-76.
[2] 徐小军, 周国模, 杜华强, 等. 缺失数据插补方法及其参数估计窗口大小对毛竹林CO2 通量估算的影响[J]. 林业科学, 2015, 51 ( 9): 141 - 149. DOI: 10. 11707/ j. 1001 -7488. 20150918. XU X J, ZHOU G M, DU H Q, et al. Effects of interpolation and window sizes in phyllostachys edulis forest for parameter esti-118 第5 期张 悦,等:洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征mation on calculation of CO2 flux[J]. Scientia Silvae Sinicae,2015, 51(9): 141-149.
[3] 张丹丹, 莫柳莹, 陈新, 等. 氮沉降对温带森林土壤甲烷氧化菌的影响[J]. 生态学报, 2017, 37(24): 8254- 8263.DOI:10. 5846/ stxb201701080064. ZHANG D D, MO L Y, CHEN X, et al. Effects of nitrogen addition on methanotrophs in temperate forest soil[J]. Acta Ecologica Sinica, 2017, 37(24): 8254-8263.
[4] 王瑶. 南岭三种主要森林类型土壤甲烷通量研究[D]. 长沙: 中南林业科技大学, 2017.WANG Y. Study on soil methane fluxes of three forest types in Nanling Mountains[D]. Changsha: Central South University of Forestry & Technology, 2017.
[5] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展[J]. 生态环境学报, 2012, 21(3): 577-583. DOI:10.3969/ j. issn. 1674-5906. 2012. 03. 031.DENG X W, YANG J J, CHEN H, et al. Advances in the research of methane oxidation in forest soils[J]. Ecology and Environment Sciences, 2012, 21(3): 577-583.
[6] ANONYMOUS. Peer review report 2 on “methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique”[J]. Agricultural and Forest Meteorology,2016, 217: 41. DOI:10. 1016/ j. agrformet. 2016. 01.054.
[7] 菊花, 申国珍, 马明哲, 等. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应[J]. 植物生态学报, 2016, 40(10): 1049-1063. DOI:10. 17521/ cjpe.2016. 0069. JU H, SHEN G Z, MA M Z, et al. Greenhouse gas fluxes of typicalnorthern subtropical forest soils: impacts of land use change and reduced precipitation[J]. Chinese Journal of Plant Ecology,2016, 40(10): 1049-1063.
[8] 孙向阳. 北京低山区森林土壤中CH4 排放通量的研究[J].土壤与环境, 2000, 9(3): 173-176. DOI:10. 3969/ j. issn.1674-5906. 2000. 03. 001.SUN X Y. CH4 emission flux of forest soils in lower mountain area, Beijing[ J]. Soil and Environmental Sciences, 2000, 9(3): 173-176.
[9] 刘实, 王传宽, 许飞, 等. 4 种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 2010, 30(15):4075-4084.LIU S, WANG C K, XU F, et al. Soil effluxes of carbon dioxide,methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica,2010, 30(15): 4075-4084.
[10] 张强, 沈燕, 韩天宇, 等. 湖南莽山4 种林型甲烷通量及其影响因子[J]. 中南林业科技大学学报, 2017, 37(9): 104-111. DOI:10. 14067/ j. cnki. 1673-923x. 2017. 09. 018.ZHANG Q, SHEN Y, HAN T Y, et al. Methane fluxes and the effective factors of four forests in Mangshan, Hunan Province[J].Journal of Central South University of Forestry & Technology,2017, 37(9): 104-111.
[11] 张丽丽, 印亮, 郑丽丽, 等. 模拟氮沉降对鼎湖山典型森林地表烷烃、烯烃通量的影响[ J]. 生态学杂志, 2017, 36(12 ): 3462 - 3469. DOI: 10. 13292/ j. 1000 - 4890.201712. 001.ZHANG L L, YIN L, ZHENG L L, et al. Effects of simulated nitrogen deposition on alkane and alkene fluxes from forest floor at Dinghushan[J]. Chinese Journal of Ecology, 2017, 36(12): 3462-3469.
[12] ZHANG C H, JU W M, CHEN J M, et al. China??s forest biomass carbon sink based on seven inventories from 1973 to 2008[J]. Climatic Change, 2013, 118(3/4): 933-948. DOI:10. 1007/ s10584-012-0666-3.
[13] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308-2316. DOI:10. 13287/ j. 1001-9332. 2008. 0396.FANG S Z. Silviculture of poplar plantation in China: a review[J]. Chinese Journal of Applied Ecology, 2008, 19 ( 10):2308-2316.
[14] 李奇, 朱建华, 冯源, 等. 中国主要人工林碳储量与固碳能力[J]. 西北林学院学报, 2016, 31(4): 1-6. DOI:10. 3969/j. issn. 1001-7461. 2016. 04. 01.LI Q, ZHU J H, FENG Y, et al. Carbon stocks and carbon sequestration capacity of the main plantations in China[J]. Journal of Northwest Forestry University, 2016, 31(4): 1-6.
[15] 康满春. 北方典型杨树人工林能量分配与碳水通量模拟[D]. 北京: 北京林业大学, 2016.KANG M C. Energy partitioning and modelling of carbon and water fluxes of a poplar plantation ecosystem in northern China[D].Beijing: Beijing Forestry University, 2016. [16] 魏远, 张旭东, 江泽平, 等. 湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究[J]. 林业科学研究, 2010, 23(5): 656-665. DOI:10. 13275/ j. cnki. lykxyj. 2010. 05. 011.WEI Y, ZHANG X D, JIANG Z P, et al. Study on the seasonaldynamic of net ecosystem exchange over a poplar plantation of Yueyang City in Hunan Province[J]. Forest Research, 2010, 23 (5): 656-665.
[17] 彭镇华, 王妍, 任海青, 等. 安庆杨树林生态系统碳通量及其影响因子研究[J]. 林业科学研究, 2009, 22(2): 237-242. DOI:10. 3321/ j. issn:1001-1498. 2009. 02. 015.PENG Z H, WANG Y, REN H Q, et al. Research on the variation of carbon flux and the relationship of environmental factors and carbon flux of Populus forest ecosystem in the reaches of Yangtze River in Anqing[J]. Forest Research, 2009, 22(2):237-242.
[18] 耿绍波. 河南西平杨树人工林生态系统碳通量及其环境响应研究[D]. 北京: 北京林业大学, 2011.GENG S B. Study on the carbon flux observation over poplar plantation ecosystem of Xiping City in Henan Province of China [D]. Beijing: Beijing Forestry University, 2011.
[19] 王妍, 彭镇华, 江泽慧, 等. 长江滩地杨树林生态系统的碳通量特征[J]. 林业科学, 2009, 45(11): 156-160. DOI:10.3321/ j. issn:1001-7488. 2009. 11. 025.WANG Y, PENG Z H, JIANG Z H, et al. Characteristics of carbon flux of Populus forest in the reaches of Yangtze River in Hunan[J]. Scientia Silvae Sinicae, 2009, 45(11): 156-160.
[20] KOCHENDORFER J, CASTILLO E G, HAAS E, et al. Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest[J]. Agricultural and Forest Meteorology, 2011,151(5): 544-553. DOI:10. 1016/ j. agrformet. 2010. 12. 012.
[21] 徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370. DOI:10. 3321/ j. issn:1001-8166. 2008. 04. 005.XU Z W, LIU S M, GONG L J, et al. A study on the data processing and quality assessment of the eddy covariance system[J].119南京林业大学学报( 自然科学版) 第43 卷Advances in Earth Science, 2008, 23(4): 357-370.
[22] 柳媛普, 李锁锁, 吕世华, 等. 几种通量资料修正方法的比较[J]. 高原气象, 2013, 32(6): 1704-1711. DOI:10. 7522/j. issn. 1000-0534. 2013. 00127.LIU Y P, LI S S, LV S H, et al. Comparison of flux correction methods for eddy-covariance measurement[J]. Plateau Meteorology,2013, 32(6): 1704-1711.
[23] 张法伟, 李英年, 曹广民, 等. 青海湖北岸高寒草甸草原生态系统CO2 通量特征及其驱动因子[J]. 植物生态学报,2012, 36 ( 3 ): 187 - 198. DOI: 10. 3724/ SP. J. 1258.2012. 00187. ZHANG F W, LI Y N, CAO G M, et al. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China[J]. Chinese Journal of Plant Ecology, 2012, 36(3): 187-198.
[24] 韩帅. 涡度相关法估算长江中下游滩地杨树人工林生产力[D]. 北京: 中国林业科学研究院, 2008.HAN S. Productivity estimation of the poplar plantations on the beaches in middle and low reaches of Yangtze River using eddy covariance measurement[D]. Beijing: Chinese Academy of Forestry,2008.
[25] JASSAL R S, BLACK T A, AREVALO C, et al. Carbon sequestration and water use of a young hybrid poplar plantation in northcentralAlberta[J]. Biomass and Bioenergy, 2013, 56: 323-333. DOI:10. 1016/ j. biombioe. 2013. 05. 023.
[26] VERLINDEN M S, BROECKX L S, ZONA D, et al. Net ecosystemproduction and carbon balance of an SRC poplar plantationduring its first rotation[J]. Biomass and Bioenergy, 2013, 56:412-422. DOI:10. 1016/ j. biombioe. 2013. 05. 033.
[27] ZHOU J, ZHANG Z Q, SUN G, et al. Response of ecosystemcarbon fluxes to drought events in a poplar plantation in NorthernChina[J]. Forest Ecology and Management, 2013, 300: 33-42. DOI:10. 1016/ j. foreco. 2013. 01. 007.
[28] 徐勇峰, 季淮, 韩建刚, 等. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J]. 生态学杂志, 2018, 37(2):322-331. DOI:10. 13292/ j. 1000-4890. 201802. 016.XU Y F, JI H, HAN J G, et al. Variation of net ecosystem carbonflux in growing season and its driving factors in a poplar plantationfrom Hung-tse Lake wetland[J]. Chinese Journal of Ecology, 2018, 37(2): 322-331.
[29] 牛晓栋, 江洪, 张金梦, 等. 浙江天目山老龄森林生态系统CO2 通量特征[J]. 应用生态学报, 2016, 27(1): 1-8. DOI:10. 13287/ j. 1001-9332. 201601. 010.NIU X D, JIANG H, ZHANG J M, et al. Characteristics of CO2flux in an old growth mixed forest in Tianmu Mountain, Zhejiang,China[J]. Chinese Journal of Applied Ecology, 2016, 27(1):1-8.
[30] 赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2 通量特征[J]. 林业科学, 2011, 47(11): 6- 12.DOI: 10. 11707/ j. 1001-7488. 20111102.ZHAO Z H, ZHANG L P, KANG W X, et al. Characteristics ofCO2 flux in a Chinese fir plantation ecosystem in Huitong County,Hunan Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 6-12.
[31] 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2 通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39.DOI:10. 13332/ j. 1000-1522. 20150020.LI X M, ZHANG Q L. Impact of climate factors on CO2 fluxcharacteristics in a Larix gmelinii forest ecosystem[J]. Journal ofBeijing Forestry University, 2015, 37(8): 31-39.
[32] 凌威. 长沙市三种林型甲烷通量研究[D]. 长沙: 中南林业科技大学, 2015.LING W. Research of methane (CH4 ) flux from three types offorest in Changsha City, Hunan Province[D]. Changsha: CentralSouth University of Forestry & Technology, 2015.
[33] 杨晶晶. 亚热带4 种典型森林生态系统地表甲烷通量研究[D]. 长沙: 中南林业科技大学, 2012.YANG J J. Variations of soil methane (CH4 ) flux in 4 typicalsubtropical forest ecosystems[D]. Changsha: Central South Universityof Forestry & Technology, 2012.
[34] SHOEMAKER J K, KEENAN T F, HOLLINGER D Y, et al. Forestecosystem changes from annual methane source to sink depending onlate summer water balance[J]. Geophysical Research Letters, 2014,41(2): 673-679. DOI:10.1002/2013gl058691.
[35] UEYAMA M, HAMOTANI K, NISHIMURA W, et al. Continuousmeasurement of methane flux over a larch forest using a relaxededdy accumulation method[J]. Theoretical and Applied Climatology,2012, 109(3/4): 461-472. DOI:10. 1007/ s00704-012-0587-0.
[36] 谭丽萍, 刘苏峡, 莫兴国, 等. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 2015, 39(8): 773-784.DOI:10. 17521/ cjpe. 2015. 0074.TAN L P, LIU S X, MO X G, et al. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China[J ]. Chinese Journal of Plant Ecology, 2015, 39 ( 8 ):773-784.

Last Update: 2019-10-08