我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年05期
Page:
113-120
Column:
研究论文
publishdate:
2019-09-20

Article Info:/Info

Title:
Diurnal and seasonal changes of fluxes over a poplar plantation in Hongze Lake basin
Article ID:
1000-2006(2019)05-0113-08
Author(s):
ZHANG Yue1 FENG Huili1 WANG Weifeng1 XUE Jianhui12* WU Yongbo1 YU Shuiqiang1
(1.College of Biology and the Environment, Co-Innovation Center of the Sustainable Forestry in the Southern China, Nanjing Forestry Univeristy, Nanjing 210037, China; 2. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China)
Keywords:
poplar plantation carbon and water flux environmental factor diurnal change seasonal change Hongze Lake basin
Classification number :
S718.5
DOI:
10.3969/j.issn.1000-2006.201806032
Document Code:
A
Abstract:
【Objective】 The frequent exchange of carbon water between forest ecosystems and the atmosphere has a significant effect on carbon sequestration, which plays an important role in the regulation and mitigation of global climate change. It is important to study the carbon water exchange of forest ecosystems, in order to elucidate the carbon water cycle and carbon sequestration capacities of forest ecosystems. Furthermore, few studies have investigated the carbon water flux of poplar plantations in the Hongze Lake basin. Therefore, the aim of the present study was to investigate the diurnal and seasonal variations of carbon water flux in the poplar plantation ecosystem of the Hongze Lake basin, in order to establish a basis for evaluating the carbon sequestration capacity of the poplar plantation ecosystem. This study determined the carbon cycle of the poplar plantation ecosystem, as well as the response of the ecosystem to external meteorological factors, and established a basis for enhancing the carbon sequestration capacity of forest ecosystems. 【Method】 The present study investigated the diurnal and seasonal variations of carbon water flux in the poplar plantation ecosystem of the Hongze Lake basin, using the eddy covariance technique and micro-meteorological observation to document the long-term and continuous flux and meteorological environments. The original observation data from May 2017 to April 2018 were selected to remove and interpolate the abnormal data, and two coordinate rotation, frequency loss revision and WPL density effect were carried out on the flux data using the Express Mode module in EddyPro, which is eventually converted to the data of the 30 min. The diurnal and seasonal dynamics of CO2, CH4, and latent heat flux between the poplar plantation ecosystem and the atmosphere, as well as their correlation with external meteorological factors, were analyzed. 【Result】 ① The carbon flux of the poplar plantation ecosystem exhibited significant diurnal and seasonal variation, and CO2 flux was a strong carbon sink and source during the day and night, respectively. The ecosystem was a carbon sink throughout the year, with an annual net ecosystem exchange(NEE)of -506.9 g/(m2·a). The daily changes exhibited a U-shaped curve during both the growing and non-growing seasons, and the carbon absorption during the growing season was significantly greater than that during the non-growing season. During the growing season, the NEE exhibited a significant logarithmic relationship with photosynthetically active radiation(PAR), whereas during the non-growing season, NEE exhibited a significant exponential relationship with nocturnal soil temperature(Ts). ② The latent heat(LE)of the poplar plantation ecosystem exhibited significant diurnal and seasonal variation, with a “single peak-type” curve during both the growing and non-growing seasons, and in the growing season greater than the non-growing season. Both LE and vapor pressure deficit(VPD)exhibited a significant linear positive correlation between the growing and non-growing seasons. ③ There was no significant diurnal or seasonal variation in CH4 flux during either the growing or non-growing season; CH4 was weakly absorbed during the growing season and, at best, weakly emitted during the non-growing season. In addition, the whole year was shown as the weak CH4 sinks. 【Conclusion】 The poplar plantation ecosystem of the Hongze Lake basin possesses a high carbon sequestration capacity. Indeed, CO2 and LE flux exhibited significant diurnal and seasonal variation, whereas CH4 flux was not significant, and the carbon water flux of the ecosystem was significantly influenced by environmental factors. This work provides a reference for improving the carbon sequestration ability of poplar plantations and indicates that the poplar plantation ecosystem of the Hongze Lake basin could continue to function as strong CO2 sink and weak CH4 sink here after. Therefore, planting trees, such as poplar, could be an effective way to sequester carbon and to mitigate climate change in the near future.

References

[1] DALAL R C, ALLEN D E, LIVESLEY S J, et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes: a review[J]. Plant and Soil, 2008, 309(1/2): 43-76. DOI:10.1007/s11104-007-9446-7. [2] 徐小军, 周国模, 杜华强, 等. 缺失数据插补方法及其参数估计窗口大小对毛竹林CO2通量估算的影响[J]. 林业科学, 2015, 51(9): 141-149. DOI:10.11707/j.1001-7488.20150918. XU X J, ZHOU G M, DU H Q, et al. Effects of interpolation and window sizes in phyllostachys edulis forest for parameter estimation on calculation of CO2 flux[J]. Scientia Silvae Sinicae, 2015, 51(9): 141-149. [3] 张丹丹, 莫柳莹, 陈新, 等. 氮沉降对温带森林土壤甲烷氧化菌的影响[J]. 生态学报, 2017, 37(24): 8254-8263. DOI:10.5846/stxb201701080064. ZHANG D D, MO L Y, CHEN X, et al. Effects of nitrogen addition on methanotrophs in temperate forest soil[J]. Acta Ecologica Sinica, 2017, 37(24): 8254-8263. [4] 王瑶. 南岭三种主要森林类型土壤甲烷通量研究[D]. 长沙: 中南林业科技大学, 2017. WANG Y. Study on soil methane fluxes of three forest types in Nanling Mountains[D]. Changsha: Central South University of Forestry & Technology, 2017. [5] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展[J]. 生态环境学报, 2012, 21(3): 577-583. DOI:10.3969/j.issn.1674-5906.2012.03.031. DENG X W, YANG J J, CHEN H, et al. Advances in the research of methane oxidation in forest soils[J]. Ecology and Environment Sciences, 2012, 21(3): 577-583. [6] ANONYMOUS. Peer review report 2 on “methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique”[J]. Agricultural and Forest Meteorology, 2016, 217: 41. DOI:10.1016/j.agrformet.2016.01.054. [7] 菊花, 申国珍, 马明哲, 等. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应[J]. 植物生态学报, 2016, 40(10): 1049-1063. DOI:10.17521/cjpe.2016.0069. JU H, SHEN G Z, MA M Z, et al. Greenhouse gas fluxes of typical northern subtropical forest soils: impacts of land use change and reduced precipitation[J]. Chinese Journal of Plant Ecology, 2016, 40(10): 1049-1063. [8] 孙向阳. 北京低山区森林土壤中CH4排放通量的研究[J]. 土壤与环境, 2000, 9(3): 173-176. DOI:10.3969/j.issn.1674-5906.2000.03.001. SUN X Y. CH4 emission flux of forest soils in lower mountain area, Beijing[J]. Soil and Environmental Sciences, 2000, 9(3): 173-176. [9] 刘实, 王传宽, 许飞, 等. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 2010, 30(15): 4075-4084. LIU S, WANG C K, XU F, et al. Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica, 2010, 30(15): 4075-4084. [10] 张强, 沈燕, 韩天宇, 等. 湖南莽山4种林型甲烷通量及其影响因子[J]. 中南林业科技大学学报, 2017, 37(9): 104-111. DOI:10.14067/j.cnki.1673-923x.2017.09.018. ZHANG Q, SHEN Y, HAN T Y, et al. Methane fluxes and the effective factors of four forests in Mangshan, Hunan Province[J]. Journal of Central South University of Forestry & Technology, 2017, 37(9): 104-111. [11] 张丽丽, 印亮, 郑丽丽, 等. 模拟氮沉降对鼎湖山典型森林地表烷烃、烯烃通量的影响[J]. 生态学杂志, 2017, 36(12): 3462-3469. DOI:10.13292/j.1000-4890.201712.001. ZHANG L L, YIN L, ZHENG L L, et al. Effects of simulated nitrogen deposition on alkane and alkene fluxes from forest floor at Dinghushan[J]. Chinese Journal of Ecology, 2017, 36(12): 3462-3469. [12] ZHANG C H, JU W M, CHEN J M, et al. China's forest biomass carbon sink based on seven inventories from 1973 to 2008[J]. Climatic Change, 2013, 118(3/4): 933-948. DOI:10.1007/s10584-012-0666-3. [13] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308-2316. DOI:10.13287/j.1001-9332.2008.0396. FANG S Z. Silviculture of poplar plantation in China: a review[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2308-2316. [14] 李奇, 朱建华, 冯源, 等. 中国主要人工林碳储量与固碳能力[J]. 西北林学院学报, 2016, 31(4): 1-6. DOI:10.3969/j.issn.1001-7461.2016.04.01. LI Q, ZHU J H, FENG Y, et al. Carbon stocks and carbon sequestration capacity of the main plantations in China[J]. Journal of Northwest Forestry University, 2016, 31(4): 1-6. [15] 康满春. 北方典型杨树人工林能量分配与碳水通量模拟[D]. 北京: 北京林业大学, 2016. KANG M C. Energy partitioning and modelling of carbon and water fluxes of a poplar plantation ecosystem in northern China[D]. Beijing: Beijing Forestry University, 2016. [16] 魏远, 张旭东, 江泽平, 等. 湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究[J]. 林业科学研究, 2010, 23(5): 656-665. DOI:10.13275/j.cnki.lykxyj.2010.05.011. WEI Y, ZHANG X D, JIANG Z P, et al. Study on the seasonal dynamic of net ecosystem exchange over a poplar plantation of Yueyang City in Hunan Province[J]. Forest Research, 2010, 23(5): 656-665. [17] 彭镇华, 王妍, 任海青, 等. 安庆杨树林生态系统碳通量及其影响因子研究[J]. 林业科学研究, 2009, 22(2): 237-242. DOI:10.3321/j.issn:1001-1498.2009.02.015. PENG Z H, WANG Y, REN H Q, et al. Research on the variation of carbon flux and the relationship of environmental factors and carbon flux of Populus forest ecosystem in the reaches of Yangtze River in Anqing[J]. Forest Research, 2009, 22(2): 237-242. [18] 耿绍波. 河南西平杨树人工林生态系统碳通量及其环境响应研究[D]. 北京: 北京林业大学, 2011. GENG S B. Study on the carbon flux observation over poplar plantation ecosystem of Xiping City in Henan Province of China[D]. Beijing: Beijing Forestry University, 2011. [19] 王妍, 彭镇华, 江泽慧, 等. 长江滩地杨树林生态系统的碳通量特征[J]. 林业科学, 2009, 45(11): 156-160. DOI:10.3321/j.issn:1001-7488.2009.11.025. WANG Y, PENG Z H, JIANG Z H, et al. Characteristics of carbon flux of Populus forest in the reaches of Yangtze River in Hunan[J]. Scientia Silvae Sinicae, 2009, 45(11): 156-160. [20] KOCHENDORFER J, CASTILLO E G, HAAS E, et al. Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest[J]. Agricultural and Forest Meteorology, 2011, 151(5): 544-553. DOI:10.1016/j.agrformet.2010.12.012. [21] 徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370. DOI:10.3321/j.issn:1001-8166.2008.04.005. XU Z W, LIU S M, GONG L J, et al. A study on the data processing and quality assessment of the eddy covariance system[J]. Advances in Earth Science, 2008, 23(4): 357-370. [22] 柳媛普, 李锁锁, 吕世华, 等. 几种通量资料修正方法的比较[J]. 高原气象, 2013, 32(6): 1704-1711. DOI:10.7522/j.issn.1000-0534.2013.00127. LIU Y P, LI S S, LV S H, et al. Comparison of flux correction methods for eddy-covariance measurement[J]. Plateau Meteorology, 2013, 32(6): 1704-1711. [23] 张法伟, 李英年, 曹广民, 等. 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子[J]. 植物生态学报, 2012, 36(3): 187-198. DOI:10.3724/SP.J.1258.2012.00187. ZHANG F W, LI Y N, CAO G M, et al. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China[J]. Chinese Journal of Plant Ecology, 2012, 36(3): 187-198. [24] 韩帅. 涡度相关法估算长江中下游滩地杨树人工林生产力[D]. 北京: 中国林业科学研究院, 2008. HAN S. Productivity estimation of the poplar plantations on the beaches in middle and low reaches of Yangtze River using eddy covariance measurement[D]. Beijing: Chinese Academy of Forestry, 2008. [25] JASSAL R S, BLACK T A, AREVALO C, et al. Carbon sequestration and water use of a young hybrid poplar plantation in north-central Alberta[J]. Biomass and Bioenergy, 2013, 56: 323-333. DOI:10.1016/j.biombioe.2013.05.023. [26] VERLINDEN M S, BROECKX L S, ZONA D, et al. Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation[J]. Biomass and Bioenergy, 2013, 56: 412-422. DOI:10.1016/j.biombioe.2013.05.033. [27] ZHOU J, ZHANG Z Q, SUN G, et al. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China[J]. Forest Ecology and Management, 2013, 300: 33-42. DOI:10.1016/j.foreco.2013.01.007. [28] 徐勇峰, 季淮, 韩建刚, 等. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J]. 生态学杂志, 2018, 37(2): 322-331. DOI:10.13292/j.1000-4890.201802.016. XU Y F, JI H, HAN J G, et al. Variation of net ecosystem carbon flux in growing season and its driving factors in a poplar plantation from Hung-tse Lake wetland[J]. Chinese Journal of Ecology, 2018, 37(2): 322-331. [29] 牛晓栋, 江洪, 张金梦, 等. 浙江天目山老龄森林生态系统CO2通量特征[J]. 应用生态学报, 2016, 27(1): 1-8. DOI:10.13287/j.1001-9332.201601.010. NIU X D, JIANG H, ZHANG J M, et al. Characteristics of CO2 flux in an old growth mixed forest in Tianmu Mountain, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 1-8. [30] 赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2通量特征[J]. 林业科学, 2011, 47(11): 6-12. DOI: 10.11707/j.1001-7488.20111102. ZHAO Z H, ZHANG L P, KANG W X, et al. Characteristics of CO2 flux in a Chinese fir plantation ecosystem in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 6-12. [31] 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. DOI:10.13332/j.1000-1522.20150020. LI X M, ZHANG Q L. Impact of climate factors on CO2 flux characteristics in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8): 31-39. [32] 凌威. 长沙市三种林型甲烷通量研究[D]. 长沙: 中南林业科技大学, 2015. LING W. Research of methane(CH4)flux from three types of forest in Changsha City, Hunan Province[D]. Changsha: Central South University of Forestry & Technology, 2015. [33] 杨晶晶. 亚热带4种典型森林生态系统地表甲烷通量研究[D]. 长沙: 中南林业科技大学, 2012. YANG J J. Variations of soil methane(CH4)flux in 4 typical subtropical forest ecosystems[D]. Changsha: Central South University of Forestry & Technology, 2012. [34] SHOEMAKER J K, KEENAN T F, HOLLINGER D Y, et al. Forest ecosystem changes from annual methane source to sink depending on late summer water balance[J]. Geophysical Research Letters, 2014, 41(2): 673-679. DOI:10.1002/2013gl058691. [35] UEYAMA M, HAMOTANI K, NISHIMURA W, et al. Continuous measurement of methane flux over a larch forest using a relaxed eddy accumulation method[J]. Theoretical and Applied Climatology, 2012, 109(3/4): 461-472. DOI:10.1007/s00704-012-0587-0. [36] 谭丽萍, 刘苏峡, 莫兴国, 等. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 2015, 39(8): 773-784. DOI:10.17521/cjpe.2015.0074. TAN L P, LIU S X, MO X G, et al. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 773-784.

Last Update: 2019-10-08