我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于根系化学组成的抗拉力学特性分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年01期
Page:
186-192
Column:
研究论文
publishdate:
2020-01-15

Article Info:/Info

Title:
Tensile mechanical properties of roots based on chemical composition
Article ID:
1000-2006(2020)01-0186-07
Author(s):
ZHANG QiaoyanTANG Lixia*PAN LuCHEN Long
(College of Forestry, Guizhou University,Guiyang 550025,China)
Keywords:
plant roots soilconsolidation and slope protection mechanical properties chemical composition apparent morphology root diameter cellulose lignin
Classification number :
S718.3
DOI:
10.3969/j.issn.1000-2006.201812054
Document Code:
A
Abstract:
【Objective】The aim of this study was to gain an understanding of the relationship between the chemical composition and mechanical properties of roots.【Method】 We determined the tensile strength of roots, measured the contents of chemical components, including cellulose, hemicellulose and lignin; and assessed the surface appearance of the roots, with a view toward elucidating the protection mechanism of roots in the soil from a microscopic perspective.【Result】 ① We found that root diameter had a considerable effect on tensile strength, namely, the larger the root diameter, the higher is the ultimate tensile force, and the smaller are the ultimate tensile strength and ultimate elongation. ② The effects of root diameter on chemical composition were consistent with those of mechanical properties, with the contents of cellulose and hemicellulose increasing, whereas that of lignin showed a decrease. Furthermore, we found that whereas the lignin content of Pyracantha fortuneana was higher than that of Rhamnus dumetorum Schneid, the cellulose content showed the opposite pattern. ③ In terms of toughness and strength, the microscopic chemical structures of cellulose, hemicellulose and lignin had a marked influence on the macroscopic mechanical properties of roots, with a higher lignin content being associated with a greater ultimate tensile strength and tensile resistance, and higher contents of cellulose and hemicellulose being associated with a smaller ultimate elongation. ④ The surface of roots at the microscopic level was observed to be a “porous structure,” similar to that of the wood, and accordingly is assumed to confer the root system with mechanical strength.【Conclusion】 Collectively, our results revealed that inherent factors that influence the mechanical properties of the root to a certain degree provide a theoretical basis for the selection and optimization of tree species for ecological restoration of slope landscapes

References


[1] 吕春娟, 陈丽华, 周硕, 等. 不同乔木根系的抗拉力学特性[J]. 农业工程学报, 2011, 27(S1): 329-335. LÜ C J, CHEN L H, ZHOU S, et al. Root mechanical characteristics of different tree species[J]. Transactions of the CSAE, 2011, 27(S1): 329-335.
[2] 陈丽华. 林木根系固土力学机制[M]. 北京:科学出版社, 2008.CHEN L H. Mechanical mechanism of forest root soil fixation [M].Beijing: Science Press, 2008.
[3] 毛伶俐. 生态护坡中植被根系的力学分析[D]. 武汉: 武汉理工大学, 2007. MAO L L. The mechanical analysis of vegetation root in ecological slope prote ction [D].Wuhan: Wuhan University of Technology, 2007.
[4] 左志严. 5种植物根系力学特性及其对土壤水分的响应[D].呼和浩特: 内蒙古农业大学, 2017.ZUO Z Y. Mechanical properties of 5 plant roots and the response to soil moisture [D]. Hohhot: Inner Mongolia Agricultural Uuniversity, 2017.
[5] 朱海丽. 植物根系固土护坡微观机理分析[J]. 科学与财富, 2015, 30(11):289-290.ZHU H L. Microcosmic analysis on soil fixation and slop protection by root system [J]. Science and fortune, 2015, 30(11):289-290.
[6] 张云伟, 惠尚, 卜晓磊,等. 3种散生竹的单根抗拉力学特性[J]. 林业科学, 2013, 49(7):183-187.ZHANG Y W, HUI S, BO X L, et al. Mechanical characteristics of tensile strength for three monopodial bamboo single roots [J]. Scientia Silvae Sinicae, 2013, 49(7):183-187.
[7] 李云鹏, 张会兰, 王玉杰,等. 针叶与阔叶树根系对土壤抗剪强度及坡体稳定性的影响[J]. 水土保持通报, 2014, 34(1):40-45.LI Y P, ZHANG H L, WANG Y J, et al. effect of acerda and broad leaved tree roots on soil shear strength and slope stability[J]. Soil and Water Conservation Bulletin, 2014, 34(1):40-45.
[8] 杨维西, 黄治江. 黄土高原九个水土保持树种根的抗拉力[J]. 中国水土保持, 1988, 8(9):49-51. YANG W X, HUANG Z J. Tensile resistance of tree roots of nine soil and water conservation species in Loess Plateau [J]. China Soil and Water Conservation, 1988,8(9):49-51. DOI:10.14123/j.cnki.swcc.1988.09.013.
[9] 赵丽兵, 张宝贵. 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]. 农业工程学报, 2007, 23(9): 7-12.ZHAO L B, ZHANG B G. Experimental study on root bio-mechanics and relevant factors of Medicago sativa and Digitaria sanguinalis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 7-12. DOI:10.3321/j.issn:1002-6819.2007.09.002.
[10] TOSI M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines(Italy)[J]. Geomorphology, 2007, 87(4): 268-283. DOI:10.1016/j.geomorph.2006.09.019.
[11] COMINO E, MARENGO P. Root tensile strength of three shrub species: Rosa canina, Cotoneaster dammeri and Juniperus horizontalis[J]. Catena, 2010, 82(3): 227-235. DOI:10.1016/j.catena.2010.06.010.
[12] NILAWEERA N S, NUTALAYA P. Role of tree roots in slope stabilisation[J]. Bulletin of Engineering Geology and the Environment, 1999, 57(4): 337-342. DOI:10.1007/s100640050056.
[13] ZHANG C B, CHEN L H, JIANG J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability[J]. Geomorphology, 2014, 206: 196-202. DOI:10.1016/j.geomorph.2013.09.024.
[14] BISCHETTI G B, CHIARADIA E A, EPIS T, et al. Root cohesion of forest species in the Italian Alps[J]. Plant and Soil, 2009, 324(1/2): 71-89. DOI:10.1007/s11104-009-9941-0.
[15] 李可, 朱海丽, 宋路,等. 青藏高原两种典型植物根系抗拉特性与其微观结构的关系[J]. 水土保持研究, 2018, 25(2):240-249. LI K, ZHU H L SONG L, et al. Relationship between tensile strength and microstructure of roots of two typical plants in Qinghai-Tibet Plateau [J]. Research of Soil and Water Conservation, 2018, 25(2):240-249.
[16] 蒋坤云, 陈丽华, 盖小刚, 等. 华北护坡阔叶树种根系抗拉性能与其微观结构的关系[J]. 农业工程学报, 2013, 29(3): 115-123. JIANG K Y, CHEN L H, GAI X G, et al. Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China [J]. Journal of Agricultural Engineering, 2013, 29(3):115-123.
[17] 蒋坤云, 陈丽华, 杨苑君, 等. 华北油松、落叶松根系抗拉强度与其微观结构的相关性研究[J]. 水土保持学报, 2013, 27(2): 8-12. JIANG K Y, CHEN L H, YANG Y J, et al. Relationship between tensile strength and selected anatomical features of two different conifer species’ roots in North China[J]. Journal of Soil and Water Conservation, 2013, 27(2): 8-12, 19. DOI:10.13870/j.cnki.stbcxb.2013.02.053.
[18] 李宁. 四种乔木根系抗拉特性的影响因素研究[D].北京:北京林业大学, 2016. LI N. Study on the iinfluence factors of root tensile properties by four arbor root system [D]. Beijing: Beijing Forestry University, 2016.
[19] SLUITER J B, RUIZ R O, SCARLATA C J, et al. Compositional analysis of lignocellulosic feedstocks. 1: review and description of methods[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9043-9053. DOI:10.1021/jf1008023.
[20] 高华端, 孙泉忠, 袁勇. 喀斯特地区不同土地利用类型土壤侵蚀特征研究[J]. 水土保持通报, 2010, 30(2): 92-96. GAO H D, SUN Q Z, YUAN Y. Characteristics of soil erosion for different land types in Karst areas[J]. Bulletin of Soil and Water Conservation, 2010, 30(2): 92-96. DOI:10.13961/j.cnki.stbctb.2010.02.024.
[21] 刘国彬, 蒋定生, 朱显谟. 黄土区草地根系生物力学特性研究[J]. 水土保持学报, 1996, 2(3):21-28. LIU G B, JIANG D S, ZHU X M. Study on grasses root bio-mechanics in Loess Plateau[J]. Journal of Soil and Water Conservation, 1996, 2(3):21-28.
[22] 徐有朋.木材学[M].北京:中国林业出版社.2006.XU Y P. Wood Science [M]. Beijing: China Forestry Publishing House, 2006.
[23] NORSTRÖM E, FOGELSTRÖM L, NORDQVIST P, et al. Xylan-a green binder for wood adhesives[J]. European Polymer Journal, 2015, 67(4):483-493. DOI: 10.1016/j.eurpolymj.2015.02.021.
[24] 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展,2013, 25(5):838-858. LU Y, WEI X Y, ZONG Z M,et al. Structural investigation and application of lignins [J]. Chemical Progress, 2013, 25(5):838-858.
[25] GENET M, STOKES A, SALIN F, et al. The influence of cellulose content on tensile strength in tree roots[J]. Plant and Soil, 2005, 278(1/2): 1-9. DOI:10.1007/s11104-005-8768-6.
[26] 刘明超, 陈常青. 基于细观力学的多孔材料断裂特性分析[C]// 航空科学与技术全国博士生学术论坛. 2016. LIU M C, CHEN C Q. Analysis of fracture characteristics of porous materials based on micromechanics [C]// national PhD student in aviation science and technology academic BBS, 2016.
[27] 连广, 王庭魁, 戴澄月. X射线吸收法测定木材空隙度[J]. 林业科技, 1990, 7(1):43-44. LIAN G, WANG T K, DAI C Y. Determination of wood void by X-ray absorption method [J]. Forestry Technology, 1990,7(1):43-44.
[28] 张波. 马尾松木材管胞形态及微力学性能研究[D]. 北京: 中国林业科学研究院, 2007. ZHANG B. Study on the morphology and micromechanical properties of wood tracheid of masson pine [D]. Beijing:Chinese Academy of Forestry Sciences, 2007.

Last Update: 2020-01-15