我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

杂种金叶银杏叶片光合特性分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年01期
Page:
193-199
Column:
研究论文
publishdate:
2020-01-15

Article Info:/Info

Title:
Analysis of photosynthetic characteristics of hybrid golden leaf ginkgo
Article ID:
1000-2006(2020)01-0193-07
Author(s):
ZHAO Hui1 LYU Lianghe2 LU Xin2 GUO Liyu1 ZHU Zunling34* WANG Gaiping24
(1.College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; 2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 3. College of Art and Design, Nanjing Forestry University, Nanjing 210037, China; 4.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
golden leaf ginkgo hybrid photosynthetic characteristics
Classification number :
S718; S334
DOI:
10.3969/j.issn.1000-2006.201809012
Document Code:
A
Abstract:
【Objective】 The effects of artificial hybridization on the photosynthetic characteristics of Ginkgo biloba progeny were studied and the basis for further obtaining excellent germplasm of Ginkgo biloba with strong environmental adaptability was provided. 【Method】 The annual seedlings of hybrid golden leaf ginkgo(‘Wannianjin’בNanlin No. 1’)were used as materials, and the same plant natural pollination(father is uncertain) Ginkgo biloba annual seedlings were used as control. The basic parameters of photosynthetic parameters and light response curves of leaves were measured, and the changes of photosynthetic capacity and environmental adaptability were compared. 【Result】 The net photosynthetic rate, stomatal conductance and water use efficiency of hybrid golden leaf ginkgo were significantly higher than the control, showing a stronger adaptability to seasonal changes. The results of light response curve fitting showed that the maximum net photosynthetic rate of Ginkgo biloba was higher and the photosynthetic capacity was stronger. At the same time, the light saturation point, the internal quantum efficiency, the quantum efficiency at the light compensation point, and the apparent quantum efficiency are also high. The light compensation point and dark breathing rate are also higher than the control, and the organic matter is consumed quickly. Correlation analysis showed that the net photosynthetic rate showed a significant positive correlation with stomatal conductance and water use efficiency; stomatal conductance was positively correlated with apparent quantum efficiency and transpiration rate. 【Conclusion】 Hybridization changed the photosynthetic parameters of Ginkgo biloba, effectively improved the potential of light energy utilization and light transformation of offspring, and made better use of a full-day of light. Therefore, it is possible to cultivate a golden leaf ginkgo variety that is more adaptable to the light environment

References


[1] 何海燕, 路兆庚, 何小弟. 北美枫香‘秋霞红’新品种选育[J]. 园林, 2014(5): 58-59. HE H Y, LU Z G, HE X D. Breeding of new varieties of Liquidambar styraciflua ‘Qiuxiahong’ [J]. Garden, 2014(5): 58-59.
[2] 王欢利. 黄叶银杏呈色基础及适应性差异[D]. 南京: 南京林业大学, 2015. WANG H L. The molecular basis of leaf-color difference between yellow-leaf and green-leaf ginkgo [D]. Nanjing:Nanjing Forestry University, 2015.
[3] YU W W, CAO F L. Preliminary study on leaf color development and photosynthetic characteristics of golden-leaf ginkgo[J]. Agricultural Science & Technology,2011,12(8): 1166-1169, 1173.
[4] 郁万文, 祝遵凌, 曹福亮, 等. 金叶银杏半同胞子代无性系的叶色和色素含量变化及呈色机制分析[J]. 植物资源与环境学报, 2016,25(1): 43-53. YU W W, ZHU Z L, CAO F L, et al. Analyses on changes in leaf color and pigment contents and coloring mechanism of half-sib progeny clones of golden-leaf ginkgo [J]. Journal of Plant Resources and Environment, 2016, 25(1): 43-53. DOI: 10.3969/j.issn.1674-7895.2016.01.06.
[5] 丁延朋. 杂交金叶银杏一年生苗木性状研究[D]. 南京: 南京林业大学, 2017. DING Y P. Study on hybrid progeny of annual seedling golden-leaf ginkgo biloba[D]. Nanjing: Nanjing Forestry University, 2017.
[6] 熊传敏. 光合作用机理的研究进展[J]. 中学生物学, 2006(1): 7-9.XIONG C M. Research progress on photosynthesis mechanism [J]. Middle School Biology, 2006(1): 7-9.
[7] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2002. LI H S. Modern plant physiology [M]. Beijing: Higher Education Press, 2002.
[8] 刘志梅. 3种金银花的光合生理特性及耐旱性研究[D]. 杭州: 浙江农林大学, 2012. LIU Z M. Studies on the photosynthetic characteristies and drought tolerance of three species of Lonicera [D]. Hangzhou: Zhejiang A&F University, 2012.
[9] 叶子飘. 光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J]. 生态学杂志, 2007,26(8): 1323-1326. YE Z P. Application of light-response model in estimating the photosynthesis of super-hybrid rice combination- lI Youming 86[J]. Chinese Journal of Ecology, 2007,26(8): 1323-1326. DOI: 10.13292/j.1000-4890.2007.0226.
[10] 王欢利, 曹福亮, 刘新亮. 高温胁迫下不同叶色银杏嫁接苗光响应曲线的拟合[J]. 南京林业大学学报(自然科学版), 2015, 39(2): 14-20. WANG H L, CAO F L, LIU X L. Fitting the light response curves of two ginkgo variants under heating stress[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(2): 14-20. DOI: 10.3969/j.issn.1000-2006.2015.02.003.
[11] 蔡仕珍, 李西, 潘远智, 等. 不同光照对蝴蝶花光合特性及生长发育研究[J]. 草业学报, 2013, 22(2): 264-272. CAI S Z, LI X, PAN Y Z, et al. A study on photosynthetic characteristics and growth and development of Iris japonica under different illumination[J]. Acta Prataculturae Sinica, 2013, 22(2): 264-272.
[12] 荆天. 四种彩色植物光合生理生态特性的研究[D]. 合肥: 安徽农业大学, 2015. JING T. Study on ecological properties of photosynthesis of four color plants[D]. Hefei: Anhui Agricultural University, 2015.
[13] 于明含. 典型固沙植物冠层温度和气孔导度特征及其对土壤水分的响应[D]. 北京: 北京林业大学, 2016. YU M H. Canopy temperature and stomatal conductance characteristics of typical sand-fixation plants and their responses to soil moisture[D]. Beijing: Beijing Forestry University, 2016.
[14] 王海珍, 韩路, 徐雅丽, 等. 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析[J]. 生态环境学报, 2015, 24(5): 741-748. WANG H Z, HAN L, XU Y L, et al. Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the taklimakan desert[J]. Ecology and Environment, 2015, 24(5): 741-748.
[15] 林树燕, 张庆峰, 陈其旭, 等. 10种园林植物的耐阴性[J]. 东北林业大学学报, 2007, 35(7): 32-34. LIN S Y, ZHANG Q F, CHEN Q X, et al. Shade-tolerance of tem species of garden plants[J]. Journal of Northeast Forestry University, 2007, 35(7): 32-34. DOI: 10.3969/j.issn.1000-5382.2007.07.012.
[16] 杨兴洪, 邹琦, 赵世杰. 遮荫和全光下生长的棉花光合作用和叶绿素荧光特征[J]. 植物生态学报, 2005, 29(1): 8-15. YANG X H, ZOU Q, ZHAO S J. Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants grown in full light and 40% sunlight[J]. Acta Phytoecologica Sinica, 2005, 29(1): 8-15.
[17] 李新宇, 李延明, 孙林, 等. 银杏蒸腾耗水与环境因子的关系研究[J]. 北京林业大学学报, 2014, 36(4): 23-29. LI X N, LI Y M, SUN L, et al. Characteristics of transpiration water consumption and its relationship with environmental factors in Ginkgo biloba[J]. Journal of Beijing Forestry University, 2014, 36(4): 23-29. DOI: 10.13332/j.cnki.jbfu.2014.04.008.
[18] 王丽丽. 银杏叶片光合特性和超微结构研究[D]. 扬州: 扬州大学, 2008. WANG L L. Study on photosynthetic characteristics and ultrastructure of ginkgo leaves [D]. Yangzhou: Yangzhou University, 2008.
[19] 梁淑英. 部分城市绿化树种的生理特性及其对大气污染的响应[D]. 南京: 南京林业大学, 2008. LIANG S Y. Physio-biochemical characteristics and the response to atmospheric pollution of some urban greenizing tree species in Nanjing area[D]. Nanjing: Nanjing Forestry University, 2008.
[20] 齐明, 何贵平, 周建革, 等. 杉木无性系光合特性和呼吸速率的遗传变异性及杂交亲本筛选[J]. 江西农业大学学报, 2018, 40(2): 215-224. QI M, HE G P, ZHOU J G, et al. Genetic variability of photosynthetic and respiration rate of Chinese fir and selection of female and male parents[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(2): 215-224. DOI: 10.13836/j.jjau.2018029.

Last Update: 2020-01-15