我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

“植物-土壤”相互反馈的关键生态学问题:格局、过程与机制(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
1-9
Column:
特邀专论(执行主编 阮宏华)
publishdate:
2020-03-31

Article Info:/Info

Title:
Key ecological issues in plant-soil feedback: pattern, process and mechanism
Article ID:
1000-2006(2020)02-0001-09
Author(s):
WANG Shaojun12
(1.College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; 2.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
plant-soil rhizosphere interface ecosystem feedback effect feedback pattern feedback process feedback mechanism
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.202001013
Document Code:
A
Abstract:
The process and mechanism of mutual feedback between plant and soil can determine the structure, function and process of ecosystems. They are also key scientific issues to understand the responses of terrestrial ecosystems to global changes. This review focused on cascading effects and their variations in patterns of nutrient-feedback between plant and soil at different spatial scales(i.e., root surface, rhizosphere, species, ecosystem and region)and various temporal dimensions(from seconds to thousand years). The plant-soil feedback was expounded at the level of root-soil interface, plant species, ecosystem and regional geography. We highlighted the regulatory mechanism of rhizosphere-interface process of root secretion, symbiosis, growth and metabolism on soil water and nutrients absorption, and physical modification. Moreover, we expounded the mechanism of above- and under-ground nutrient cycling process driven by interactions among plant species, litter chemistry, soil organism and soil organic matter. The bottom-up and top-down control theories, and the detritus food-web model were applied to reveal the process and mechanism of interactions between above-and under-ground biotic communities. We explored the process and mechanism of mutual feedback between soil geography evolution(the change in pattern of rock weathering, soil formation and soil nutrients), and regional vegetation succession(i.e., dominant species replacement, and shifting in mode of vegetation distribution, and above-ground litter input). This review also focused on the characteristics, formation mechanism and possible regulatory strategies of plant-soil mutual feedback for global change issues(i.e., ecological degradation and restoration, ecological invasion of alien species, atmospheric N deposition, elevated CO2 concentration, and reduced biodiversity). Furthermore, we concluded the biological and ecological processes of the interactions between above- and under-ground terrestrial ecosystems, predicting the response characteristics and mechanism of terrestrial ecosystems

References


[1] DEDEYN G,VANDERPUTTEN W.Linking aboveground and belowground diversity[J].Ecology and Evolution,2005,20(11):625-633.DOI:10.1016/j.tree.2005.08.009.
[2] FALKOWSKI P.The global carbon cycle:a test of our knowledge of earth as a system[J].Science,2000,290(5490):291-296.DOI:10.1126/science.290.5490.291.
[3] WOLTERS V,SILVER W L,BIGNELL D E,et al.Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems:implications for ecosystem functioning[J].Bio Science,2000,50(12):1089-1098.DOI:10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO; 2.
[4] 王邵军. 武夷山土壤动物群落生态特征及功能研究[M].上海:上海交通大学出版社, 2015. WANG S J.Study on ecological characteristics and function of soil faunal community in the Wuyi Mountains[M]. Shanghai: Shanghai Jiao Tong University Press, 2015.
[5] VAN DEN BERG H. Multiple nutrient limitation in unicellulars: reconstructing Liebig’s law[J]. Mathematical Biosciences, 1998, 149(1):1-22. DOI:10.1016/S0025-5564(97)10019-0.
[6] WARDLE D A.Ecological linkages between aboveground and belowground biota[J].Science,2004,304(5677):1629-1633.DOI:10.1126/science.1094875.
[7] JENNY H. Factors of soil formation: a system of quantitative pedology[M]. New York: McGraw-Hill, 1941.
[8] SAIFULLAH,DAHLAWI S,NAEEM A,et al.Biochar application for the remediation of salt-affected soils:challenges and opportunities[J].Science of the Total Environment,2018,625(1):320-335.DOI:10.1016/j.scitotenv.2017.12.257.
[9] CRAWFORD K M,BAUER J T,COMITA L S,et al.When and where plant-soil feedback may promote plant coexistence:a meta-analysis[J].Ecology Lettter,2019,22(8):1274-1284.DOI:10.1111/ele.13278.
[10] SCHITTKO C,RUNGE C,STRUPP M,et al.No evidence that plant-soil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field[J].Journal of Ecology,2016,104(5):1243-1249.DOI:10.1111/1365-2745.12603.
[11] OLDFIELD E E,WOOD S A,BRADFORD M A.Direct effects of soil organic matter on productivity mirror those observed with organic amendments[J].Plant Soil,2018,423(1/2):363-373.DOI:10.1007/s11104-017-3513-5.
[12] MAHMOOD R,HUBBARD K G.Relationship between soil moisture of near surface and multiple depths of the root zone under heterogeneous land uses and varying hydroclimatic conditions[J].Hydrological Processes,2007,21(25):3449-3462.DOI:10.1002/hyp.6578.
[13] 王邵军,李霁航,陆梅,等.“AM真菌-根系-土壤”耦合作用机制研究进展[J].中南林业科技大学学报,2019,39(12):1-9.WANG S J,LI J H,LU M,et al.Advance on the mechanism of coupling interactions among AM fungi,roots and soils[J].Journal of Central South University of Forestry & Technology,2019,39(12):1-9.DOI:10.14067/j.cnki.1673-923x.2019.12.001.
[14] EHRENFELD J G,RAVIT B,ELGERSMA K.Feedback in the plant-soil system[J].Annual Review of Environment and Resources,2005,30(1):75-115.DOI:10.1146/annurev.energy.30.050504.144212.
[15] MOINET G Y K,MIDWOOD A J,HUNT J E,et al.Estimates of rhizosphere priming effects are affected by soil disturbance[J].Geoderma,2018,313:1-6.DOI:10.1016/j.geoderma.2017.10.027.
[16] HARDIE K.The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants[J].New Phytologist,1985,101(4):677-684.DOI:10.1111/j.1469-8137.1985.tb02873.x.
[17] LI Y M,WANG S J,LU M,et al.Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils[J].Soil and Tillage Research,2019,186:146-151.DOI:10.1016/j.still.2018.10.016.
[18] 刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000:1-7. LIU R J,LI X L.Arbuscular mycorrhiza and its application[M].Beijing:Science Press,2000:1-7.
[19] 向丹,徐天乐,李欢,等.丛枝菌根真菌的生态分布及其影响因子研究进展[J].生态学报,2017,37(11):3597-3606.XIANG D,XU T L,LI H,et al.Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J].Acta Ecologica Sinic,2017,37(11):3597-3606.DOI:10.5846/stxb201603280563.
[20] PAUSCH J,KUZYAKOV Y.Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale[J].Global Change Biology,2018,24(1):1-12.DOI:10.1111/gcb.13850.
[21] XIAO L,LIU G B,LI P,et al.Direct and indirect effects of elevated CO2 and nitrogen addition on soil microbial communities in the rhizosphere of Bothriochloa ischaemum[J].Journal of Soils and Sediments,2019,19(11):3679-3687.DOI:10.1007/s11368-019-02336-0.
[22] VAN WYK D A B,ADELEKE R,RHODE O H J,et al.Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa[J].Journal of Basic Microbiology,2017,57(9):781-792.DOI:10.1002/jobm.201700043.
[23] EGLI M,MIRABELLA A,SARTORI G.The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps[J].Geomorphology,2008,102(3/4):307-324.DOI:10.1016/j.geomorph.2008.04.001.
[24] 宋金凤,汝佳鑫,张红光,等.地衣和地衣酸与岩石矿物风化及其机制研究进展[J].南京林业大学学报(自然科学版),2019,43(4):169-177.SONG J F,RU J X,ZHANG H G,et al.Research progress on lichens,lichenic acids,rock and mineral weathering and its mechanisms[J]. J Nanjing For Univ(Nat Sci Ed),2019,43(4):169-177.DOI:10.3969/j.issn.1000-2006.201806030.
[25] BHAT K K S, NYE P H. Diffusion of phosphate to plant roots in soil-I. Quantitative autoradiography of the depletion zone[J]. Plant & Soil, 1973, 38(1): 161-175.
[26] AMBRIZ E,BáEZ-PéREZ A,SáNCHEZ-YáÑEZ J M,et al.Fraxinus-Glomus-Pisolithus symbiosis:plant growth and soil aggregation effects[J].Pedobiologia,2010,53(6):369-373.DOI:10.1016/j.pedobi.2010.07.001.
[27] 周文杰,吕德国,秦嗣军.植物与根际微生物相互作用关系研究进展[J].吉林农业大学学报,2016,38(3):253-260.ZHOU W J, LU D G, QIN S J. Research progress in interaction between plant and rhizosphere microorganisms[J].Journal of Jilin Agricultural University,2016,38(3):253-260.DOI:10.13327/j.jjlau.2016.3073.
[28] ALIKU O,OSHUNSANYA S O.Assessment of the SOILWAT model for predicting soil hydro-physical characteristics in three agro-ecological zones in Nigeria[J].International Soil and Water Conservation Research,2018,6(2):131-142.DOI:10.1016/j.iswcr.2018.01.003.
[29] JACOBS L M,SULMAN B N,BRZOSTEK E R,et al.Interactions among decaying leaf litter,root litter and soil organic matter vary with mycorrhizal type[J].Journal of Ecology,2018,106(2):502-513.DOI:10.1111/1365-2745.12921.
[30] WANG S J,RUAN H H,WANG B.Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J].Soil Biology & Biochemistry,2009,41(5):891-897.DOI:10.1016/j.soilbio.2008.12.016.
[31] 杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.YANG Y S,GUO J F,CHEN Y X,et al.Comparatively study on litter decomposition and nutrient dynamics between plantations of Fokienia hodginsii and Cunninghamia lanceolata[J].Scientia Silvae Sinicae,2004,40(3):19-25.DOI:10.3321/j.issn:1001-7488.2004.03.003.
[32] COTRUFO M F,WALLENSTEIN M D,BOOT C M,et al.The microbial efficiency-matrix stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization:do labile plant inputs form stable soil organic matter?[J].Global Change Biology,2013,19(4):988-995.DOI:10.1111/gcb.12113.
[33] VAN DE VOORDE T F J,VAN DER PUTTEN W H,BEZEMER T M.The importance of plant-soil interactions,soil nutrients,and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of old-fields[J].Oikos,2012,121(8):1251-1262.DOI:10.1111/j.1600-0706.2011.19964.x.
[34] MILAUEROVá M.Plant root response to heterogeneity of soil resources: effects of nutrient patches,AM symbiosis,and species composition[J].Folia Geobotanica,2001,36(4):337-351.DOI:10.1007/bf02899985.
[35] 王邵军,阮宏华.土壤生物对地上生物的反馈作用及其机制[J].生物多样性,2008,16(4):407-416.WANG S J,RUAN H H.Feedback mechanisms of soil biota to aboveground biology in terrestrial ecosystems[J].Biodiversity Science,2008,16(4):407-416.DOI:10.3321/j.issn:1005-0094.2008.04.012.
[36] WARDLE D. Communities and ecosystems: linking the aboveground and belowground components[M].Princeton: Princeton University Press, 2002.
[37] VAN DER HEIJDEN M G A,KLIRONOMOS J N,URSIC M,et al.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity[J].Nature,1998,396(6706):69-72.DOI:10.1038/23932.
[38] HEEMSBERGEN D A.Biodiversity effects on soil processes explained by interspecific functional dissimilarity[J].Science,2004,306(5698):1019-1020.DOI:10.1126/science.1101865.
[39] 马洁怡,王金平,张金池,等.沿海造林树种根际丛枝菌根真菌与土壤因子的通径分析[J].南京林业大学学报(自然科学版),2019,43(4):139-147.MA J Y,WANG J P,ZHANG J C,et al.Path analysis of arbuscular mycorrhizal fungi and soil factors in coastal afforestation tree species[J]. J Nanjing For Univ(Nat Sci Ed),2019,43(4):139-147.DOI:10.3969/j.issn.1000-2006.201901012.
[40] WANG S J,RUAN H H,HAN Y.Effects of microclimate,litter type,and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China[J].Ecological Research,2010,25(6):1113-1120.DOI:10.1007/s11284-010-0736-9.
[41] FARRAR J,HAWES M,JONES D,et al.How roots control the flux of carbon to the rhizosphere[J].Ecology,2003,84(4):827-837.DOI:10.1890/0012-9658(2003)084[0827:hrctfo]2.0.co; 2.
[42] SALMON S.The impact of earthworms on the abundance of Collembola:improvement of food resources or of habitat?[J].Biology and Fertility of Soils,2004,40(5):323-333.DOI:10.1007/s00374-004-0782-y.
[43] 郝玉琢,周磊,吴慧,等.4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J].南京林业大学学报(自然科学版),2019,43(4):101-108.HAO Y Z,ZHOU L,WU H,et al.Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations[J]. J Nanjing For Univ(Nat Sci Ed),2019,43(4):101-108.DOI:10.3969/j.issn.1000-2006.201806021.
[44] VINCENOT C E,CARTENì F,BONANOMI G,et al.Plant-soil negative feedback explains vegetation dynamics and patterns at multiple scales[J].Oikos,2017,126(9):1319-1328.DOI:10.1111/oik.04149.

Last Update: 2019-03-25