我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

中大径材尾细桉杂种无性系选择研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
43-50
Column:
研究论文
publishdate:
2020-03-31

Article Info:/Info

Title:
Clonal selection of middle/large diameter timber of Eucalyptus urophylla × E. tereticornis hybrid clones
Article ID:
1000-2006(2020)02-0043-08
Author(s):
ZHU Xianliang12 LAN Jun3 WANG Jianzhong3 WENG Qijie1 ZHOU Changpin1 GAN Siming1 LI Fagen1*
(1. Key Laboratory of National Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; 2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 3. Guangxi Dongmen State Forest Farm, Fusui 532108, China)
Keywords:
Eucalyptus urophylla × E. tereticornis middle/large diameter timber basic density clonal selection principal component analysis
Classification number :
S722.5
DOI:
10.3969/j.issn.1000-2006.201904005
Document Code:
A
Abstract:
【Objective】Eucalyptus species are widely planted in south China because of their large trunk diameter, superior growth and desirable wood properties.Because of their shorter cultivation period and high economic benefits, cultivating Eucalyptus trees with large trunk diameters can effectively increase the supply of medium/large diameter timber, which is in high demandin China. However, the research on Eucalyptus cultivation in China has started recently, and most of this research focused on the forest management and silvicultural technology of Eucalyptus. The number of studies on high-quality breeding and selection is currently low, and only a few Eucalyptus species used for plantations have been investigated.In this study, we investigated the genetic variation of Eucalyptus clones with the goal of selecting superior clones with medium/large diameter timber and providing the basis for further breeding selection.【Method】In this research, the growth traits of 154 twelve-year-old hybrid clones of E. urophylla×E. tereticornis were investigated, in an experimental plantation in Gonghe Town, Heshan City, Guangdong Province. Wood properties,such as basic density, cellulose content, hemicellulose content, lignin content, lignin syringyl-to-guaiacyl ratio, and fiber length-to-width ratio of eight-year-old plants were also analyzed. Genetic analyses of growth traits and wood properties included the analysis of variance and correlation and the analysis of genetic parameters. Principal component analysis was performed in order to classify the investigated hybrid clones, and comprehensive multiple trait selection was applied for the medium/large diameter timber.【Result】① The differences among the growth traits and wood properties of different clones were significant, increasing the potential for screening high-quality large diameter timber clones of E. urophylla×E. tereticornis. ② Selection of medium/large diameter timber hybrid clones of E. urophylla×E. tereticornis was not recommended at the early stage because of the low correlation results of growth traits between plants in earlier and later stages. The optimal selection time was from 4.5 to 6.5 years and this was better than selection after 1-3 years because using selection in the early stages,it is possible to exclude some important varieties too early. ③ The effect of growth traits to select wood basic density was positive, and the effect of height was the highest in the indirect trait selection experiment. ④ We observed that the clonal repeat ability of all traits was greater than that of an individual, with the clona land individual repeat ability results of 56.28%-85.34% and 24.35%-59.27%. The traits of the clones were genetically stable and were highly regulated by their genetic background. ⑤ The hybrid clones of E. urophylla×E. tereticornis were classified into four groups by the principal component analysis. Ten superior clones were selected with the selection rate of 6% and their genetic gain of growth traits was 14.64%-73.89%. The results showed that average height, diameter, volume and basic density of the 487 clones were 27.5 m, 27.6 cm, 0.719 7 m3 and 0.529 3 g/cm3, respectively.【Conclusion】The results of the cultivation experiment of E. urophylla×E. tereticornis hybrid clones showed that the clones had an appropriate medium diameter timber and had the potential for cultivation as a large diameter timber tree. The ten selected superior clones could be utilized in plantation areas similar to the ones in this study with the goal of the production of large diameter timber. This production could be achieved under the following environmental conditions: thick soil layer, loose and fertile soil, and sufficient water and heat. This study was based on only 154 clones of a single hybrid, and further research is needed to clonal selection. Future studies should consider combining genetic linkage maps, QTL mapping, and using clones from more hybrids and locations in order to analyze the complex genetic background explaining the growth traits and wood properties of E. urophylla×E.tereticornis hybrid clones

References


[1] 张磊,李丽芳,王建忠,等. 桉树大径材优良无性系的初步选育研究[J]. 桉树科技, 2019, 36(2): 21-26. ZHANG L, LI L F, WANG J Z, et al. Research on breeding of large-diameter Eucalyptus timber[J]. Eucalypt Science & Technology, 2019, 36(2): 21-26. DOI:10.13987/j.cnki.askj.2019.02.004.
[2] 何沙娥, 欧阳林男, 朱林生, 等. 桉树大径材培育技术研究概述[J]. 桉树科技, 2018, 35(1): 37-43. HE S E, OUYANG L N, ZHU L S, et al. A review of silviculture for solid-wood production from Eucalyptus plantations[J]. Eucalypt Science & Technology, 2018, 35(1): 37-43. DOI:10.13987/j.cnki.askj.2018.01.008.
[3] 李宝琦, 徐建民, 李光友, 等. 桉树大径材无性系中期选择[J]. 安徽农业科学, 2009, 37(34): 17170-17174. LI B Q, XU J M, LI G Y, et al. Research on the medium-term selection of the clone of Eucalyptus timber with large-diameter[J]. Journal of Anhui Agricultural Sciences, 2009, 37(34): 17170-17174. DOI:10.3969/j.issn.0517-6611.2009.34.176.
[4] 李晓琼, 刘亚珍, 梁水清, 等. 桉树杂交种对桉树枝瘿姬小蜂的抗性变异分析[J]. 生态学报, 2017, 37(18): 6157-6166. LI X Q, LIU Y Z, LIANG S Q, et al. Analysis of variable resistance in Eucalyptus hybrids to Leptocybe invasa[J]. Acta Ecologica Sinica, 2017, 37(18): 6157-6166. DOI:10.5846/stxb201606191192.
[5] 陈健波, 李昌荣, 项东云, 等. 尾叶桉×巨桉等桉树杂交家系杂种优势测试[J]. 南方农业学报, 2017, 48(10): 1858-1862. CHEN J B, LI C R, XIANG D Y, et al. Heterosis test for Eucalyptus hybrid families including Eucalyptus urophylla × Eucalyptus grandis[J]. Journal of Southern Agriculture, 2017, 48(10): 1858-1862. DOI:10.3969/j.issn.2095-1191.2017.10.20.
[6] 祁述雄. 中国桉树[M]. 2版.北京: 中国林业出版社, 2002.
[7] 解懿妮, 莫晓勇, 彭仕尧, 等. 粤西21个桉树无性系早期性状遗传变异分析和无性系综合选择[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 73-80. XIE Y N, MO X Y, PENG S Y, et al. Genetic variation analysis and early comprehensive selection of 21 Eucalyptus clones in western of Guangdong Province, China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(3): 73-80. DOI:10.3969/j.issn.1000-2006.2017010.
[8] 陈升侃, 周长品, 翁启杰, 等. 尾叶桉×细叶桉木材密度与生长的联合选择[J]. 林业科学研究, 2018, 31(2): 77-82.CHEN S K, ZHOU C P, WENG Q J, et al. Combined selection of wood density and growth in Eucalyptus urophylla × E. tereticornis hybrids[J]. Forest Research, 2018, 31(2): 77-82. DOI:10.13275/j.cnki.lykxyj.2018.02.011.
[9] YANG H Y, WENG Q J, LI F G, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China[J]. Forest Science, 2018, 64(3), 225-232. DOI:10.1093/forsci/fxx011.
[10] 项东云, 王明庥, 黄敏仁, 等. 大花序桉木材抗弯弹性模量变异研究[J]. 华南农业大学学报, 2012, 33(1): 73-76.XIANG D Y, WANG M X, HUANG M R, et al. Variations of modulus of elasticity in Eucalyptus cloeziana wood[J]. Journal of South China Agricultural University, 2012, 33(1): 73-76. DOI:10.7671/j.issn.1001-411X.2012.01.015.
[11] 李昌荣, 陈健波, 郭东强, 等. 锯材大花序桉生长和材性的综合指数选择[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 1-8. LI C R, CHEN J B, GUO D Q, et al. Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(1): 1-8. DOI:10.3969/j.issn.1000-2006.201805018.
[12] 张双燕, 费本华, 余雁, 等. 木质素含量对木材单根纤维拉伸性能的影响[J]. 北京林业大学学报, 2012, 34(1): 131-134. ZHANG S Y, FEI B H, YU Y. et al. Influence of lignin content on tensile properties of single wood fiber[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134. DOI:10.13332/j.1000-1522.2012.01.008.
[13] 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响[J]. 北京林业大学学报, 2012, 34(3): 107-110. WANG C G, JIANG Z H, FEI B H, et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall[J]. Journal of Beijing Forestry University, 2012, 34(3): 107-110. DOI:10.13332/j.1000-1522.2012.03.004.
[14] OZPARPUCU M, RUGGEBERG M, GIERLINGER N, et al. Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for cinnamyl alcohol dehydrogenase(CAD)[J]. Plant Journal, 2017, 91(3): 480-490. DOI:10.1111/tpj.13584.
[15] 国增超. 簸箕柳材性性状表型变异的研究[D]. 南京: 南京林业大学, 2014. GUO Z C. Phenotypic variation of wood properties in Salix suchowensis[D]. Nanjing: Nanjing Forestry University, 2014.
[16] 康建诚. 马尾松实生种子园子代材性变异分析及优良家系选择[D]. 南京: 南京林业大学, 2012. KANG J C. Wood properties variation analysis and superior families selection of Masson pine seedling seed orchard[D]. Nanjing: Nanjing Forestry University, 2012.
[17] 甘四明, 李梅, 李发根, 等. 尾叶桉×细叶桉杂种无性系扦插生根和生长性状的研究[J]. 林业科学研究, 2006, 19(2): 135-140. GAN S M, LI M, LI F G, et al. Analysis on cutting and growth traits of clones of Eucalyptus urophylla × E. tereticornis[J]. Forest Research, 2006, 19(2): 135-140. DOI:10.3321/j.issn:1001-1498.2006.02.002.
[18] 岑巨延. 广西桉树人工林二元立木材积动态模型研究[J]. 华南农业大学学报, 2007, 28(1): 91-95. CEN J Y. Study on two-way tree volume dynamic model of Eucalyptus plantations in Guangxi[J]. Journal of South China Agricultural University, 2007, 28(1): 91-95. DOI:10.3969/j.issn.1001-411X.2007.01.022.
[19] LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell.[J]. New Forests, 2017, 48(1): 33-49. DOI:10.1007/s11056-016-9554-4.
[20] 续九如. 林木数量遗传学[M]. 北京: 高等教育出版社, 2006.
[21] HEIN P R G, BOUVET J, MANDROU E, et al. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood[J]. Annals of Forest Science, 2012, 69(6): 681-691. DOI:10.1007/s13595-012-0186-3.
[22] 吴世军, 徐建民, 李光友, 等. 滇中南巨桉种源/家系年度变异分析[J]. 中国农学通报, 2018, 34(23): 60-64. WU S J, XU J M, LI G Y, et al. Genetic variation and selection for provenances and families of Eucalyptus grandis among ages[J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 60-64.
[23] APIOLAZA L A, RAYMOND C A, YEO B J. Genetic variation of physical and chemical wood properties of Eucalyptus globulus[J]. Silvae Genetica, 2005, 54(1/6): 160-166. DOI:10.1515/sg-2005-0024.
[24] 李昌荣, 项东云, 陈健波, 等. 18年生尾巨桉无性系木材纤维形态和基本密度变异研究[J]. 广西林业科学, 2011, 40(4): 262-265. LI C R, XIANG D Y, CHEN J B, et al. Study of variation on the wood fiber formation and basic density of 18-year-old Eucalyptus urophlla × Eucalyptus grandis clone[J]. Guangxi Forestry Science, 2011, 40(4): 262-265. DOI:10.19692/j.cnki.gfs.2011.04.005.
[25] 李光友, 徐建民, 王伟, 等. 杂交桉家系在冷凉区优势评价与遗传分析[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 55-63. LI G Y, XU J M, WANG W, et al. Study on heterosis estimation and genetic analysis of Eucalyptus hybrids in cold area[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(4): 55-63. DOI:10.3969 /j.issn.1000-2006.201605069.
[26] 熊涛, 王建忠, 谢献锋, 等. 圆角桉第2代家系遗传变异与中期选择[J]. 广西林业科学, 2018, 47(2): 175-179. XIONG T, WANG J Z, XIE X F, et al. Genetic variation and mid-term selection of second generation Eucalyptus tereticornis[J]. Guangxi Forestry Science, 2018, 47(2): 175-179. DOI:10.19692/j.cnki.gfs.2018.02.011.
[27] 吴世军. 尾叶桉及其杂种无性系遗传变异与选择研究[D]. 北京: 中国林业科学研究院, 2012. WU S J. Genotypic variation and selection in Eucalyptus urophylla and hybrid clones with E. urophylla[D]. Beijing: Chinese Academy of Forestry, 2012.
[28] 谷振军, 张党权, 黄青云. 木质素合成关键酶基因与造纸植物转基因改良应用研究[J]. 中南林业科技大学学报, 2010, 30(3): 67-74. GU Z J, ZHANG D Q, HUANG Q Y. Transgenic modification on pulp plants by key genes regulating lignin biosynthesis[J]. Journal of Central South University of Forestry & Technology, 2010, 30(3): 67-74. DOI:10.3969/j.issn.1673-923X.2010.03.011.
[29] STEWART J J, AKIYAMA T, CHAPPLE C, et al. The effects on lignin structure of over expression of ferulate 5-hydroxylase in hybrid poplar[J]. Plant Physiology, 2009, 150(2): 621-635. DOI:10.1104/pp.109.137059.
[30] RENAN GARCIR J, ANDERSON N, LE-FEUVRE R, et al. Rescue of syringyl lignin and sinapate ester biosynthesis in Arabidopsis thaliana by a coniferaldehyde 5-hydroxylase from Eucalyptus globulus[J]. Plant Cell Reports, 2014, 33(8): 1263-1274. DOI:10.1007/s00299-014-1614-7.
[31] STACKPOLE D J, VAILLANCOURT R E, ALVES A, et al. Genetic variation in the chemical components of Eucalyptus globulus wood[J]. Genes|Genomes|Genetics, 2011, 1(2): 151-159. DOI:10.1534/g3.111.000372.
[32] DENIS M, FAVREAU B, UENO S, et al. Genetic variation of wood chemical traits and association with underlying genes in Eucalyptus urophylla[J]. Tree Genetics & Genomes, 2013, 9(4): 927-942. DOI:10.1007/s11295-013-0606-z.
[33] MAKOUANZI G, CHAIX G, NOURISSIER S, et al. Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo[J]. Southern Forests: a Journal of Forest Science, 2017, 80(2):151-158. DOI:10.2989/20702620.2017.1298015.
[34] HATFIELD R, FUKUSHIMA R S.Can lignin be accurately measured?[J]. Crop Science, 2005, 45(3): 832-839. DOI:10.2135/cropsci2004.0238.
[35] 卢万鸿, 楚彪, 林彦, 等. 桉树材性性状近红外预测模型的建立[J]. 桉树科技, 2015, 32(2): 10-16. LU W H, CHU B, LIN Y, et al. NIRS calibration for predicting wood properties of Eucalyptus[J]. Eucalypt Science & Technology, 2015, 32(2): 10-16. DOI:10.13987/j.cnki.askj.2015.02.002.

Last Update: 2019-03-25