我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

厚荚相思人工林碳素贮量及其空间分布(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2009年03期
Page:
46-50
Column:
研究论文
publishdate:
2009-05-30

Article Info:/Info

Title:
Carbon storage and distribution in Acacia crassicarpa plantation ecosystem
Author(s):
HE Bin1 YU Chunhe2 WANG Anwu2 LI Jiupeng2 CHEN Yuping1 RONG Yi1
1.Forestry College of Guangxi University, Nanning 530004, China; 2.Qipo Forest Farm of Guangxi, Nanning 530225, China
Keywords:
Acacia crassicarpa plantation carbon content carbon storage carbon distribution
Classification number :
S718.55
DOI:
10.3969/j.jssn.1000-2006.2009.03.011
Document Code:
A
Abstract:
The content, storage and distribution of carbon in 7yearold Acacia crassicarpa plantation ecosystem were studied. The results showed that carbon content in different organs of A.crassicarpa trees ranged from 470.1 g/kg to 533.8 g/kg, and decreased in the order of leaf>branch>stem>root>bark.The carbon content in shrub, herb and litter floor were 4654 g/kg, 425.7 g/kg and 478.3 g/kg, respectively. Carbon content in the soil (0—80 cm) was 12.94 g/kg and declines with soil depth. The total carbon storage in A.crassicarpa plantation ecosystems amounted to 141.05 t/hm2, of which overstorey of A.crassicarpa stored 46.97 t/hm2 and accounted for 33.30%, and understorey plant stored 2.07 t/hm2 and accounted for 1.47%, and litter floor stored 4.49 t/hm2 and accounted for 3.18%, and soil stored 92.01 t/hm2 and accounted for 65.23%. The carbon storage in different organs was positively related to the biomass of corresponding organs. Stem accumulated the highest carbon storage, comprised 52.20% of carbon storage in overstory trees, the rest in branch, leaf, bark and root, etc., seized 47.80%. The annual net productivity of 7yearold A.crassicarpa plantation was 20.06 t/(hm2·a) and annual carbon fixation was up to 9.86 t/(hm2·a).

References

[1]Mathi Y, Baldoeehi D D, Jarvis P G. The carbon balance of tropical,temperate and boreal forests[J]. Plant Cell and Enviroment, 1999, 22: 715-740.
[2]Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185-190.
[3]方精云,陈安平. 中国森林植被碳库动态变化及其意义[J]. 植物学报,2001,43(9):967-973.
[4]刘国华,傅伯杰,方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报,2000,20(5):733-740.
[5]周玉荣,于振良,赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报,2000,24(5):518-522.
[6]王效科,冯宗炜,欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究[J]. 应用生态学报,2001,12(1):13-16.
[7]Jiang H, Apps M L, Peng C H. Modeling the influence of harvesting on Chinese boreal forest carbon dynamics[J]. Forest Ecology and Management, 2002, 169: 65-82.
[8]阮宏华,姜志林,高苏铭. 苏南丘陵主要森林类型碳循环研究——含量与分布规律[J]. 生态学杂志,1997,16(6):17-21.
[9]Zhang J, Ge Y, Chang J. Carbon storage by ecological service forests in Zhejiang Province, subtropical China[J]. Forest Ecology and Management, 2007, 245: 64-75.
[10]潘志刚,吕鹏信,杨民权,等. 5种热带相思3年种源试验初报[J]. 林业科学研究,1988,1(5):553-559.[11]Arnold R J, Cuevas E. Genetic variation in early growth, stem straightness and survival in Acacia crassicarpa, A.mangiu and Eucalyptus urophylla in Bukidnon Province, Philppines[J]. Journal of Tropical Forest Science, 2003, 15(2): 332-351.
[12]秦武明,何斌,覃世赢. 厚荚相思人工林生物量和生产力变化规律研究[J]. 西北林学院学报,2008,23(2):17-20.
[13]秦武明,何斌,覃世赢,等. 厚荚相思人工林营养元素生物循环的研究[J]. 水土保持学报,2007,21(4):103-108.
[14]房用,王淑军.石灰岩山地中侧柏、油松混交林的生物量[J].南京林业大学学报:自然科学版,2007,31(3):62-66.
[15]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M]. 北京:科学出版社,1983.
[16]尉海东,马祥庆. 中亚热带不同发育阶段杉木人工林生态系统碳贮量研究[J]. 江西农业大学学报,2006,28(2):239-243,267.
[17]尉海东,马祥庆. 不同发育阶段马尾松人工林生态系统碳贮量研究[J]. 西北农林科技大学学报:自然科学版,2007,35(1):371-374.
[18]肖复明,范少辉,汪思龙,等. 毛竹(Phyllostachys pubescens)、杉木(Cunninghamia lanceolata)人工林生态系统碳贮量及其分配特征[J]. 生态学报,2007,27(7):2794-2801.
[19]Onigkeit J, Sonntag M, Alcamo J. Carbon Plantations in the IMAGE Modelmodel Description and Scenarios. WZ III Report No. P00031 Center for Environmental Systems Research[R]. Germany: University of Kassel, 2000.
[20]杨玉盛,陈光水,王义祥,等. 格氏栲人工林和杉木人工林碳吸存与碳平衡[J]. 林业科学,2007,43(3):113-117.

Last Update: 2009-05-30