我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

银杏品种枝桠管胞形态径向变化趋势研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2009年03期
Page:
99-102
Column:
研究论文
publishdate:
2009-05-30

Article Info:/Info

Title:
The radial variation trend of tracheid morphology of branches from Ginkgo biloba L.cultivars
Author(s):
WANG Fang1 ZHANG Jing2 XING Shiyan1* HU Aihua1 HAN Kejie1
1.College of Forestry, Shandong Agricultural University, Tai’an 271018, China; 2.Nanshan College, Yantai 265713, China
Keywords:
anatomical structure tracheid morphology compression wood radial variation Ginkgo biloba L.
Classification number :
S781
DOI:
10.3969/j.jssn.1000-2006.2009.03.023
Document Code:
A
Abstract:
The radial variation trend of tracheid morphology and microfibril angle of compression wood and opposite wood of branches from five Ginkgo biloba L. cultivars including “No.3 Horse Bell” from China, “Tengjiulang”, “Jinbingwei”, “Huangjinwan” and “Lingnan” from Japan were studied in this paper. The results showed that the variation trend of double wall thickness and tangential diameter was increased basically from pith to bark, and the curve presented “V”type or “N”type. The radial diameter of compression wood increased gradually, however, the radial diameter of the opposite wood was increased at first and then decreased. The variation trend of the ratio of cell wall to cavity was increased from pith to bark, but the variation trend of the widthdiameter ratio was opposite. The microfibril angle decreased gradually with the increase of growth ring, the curve presented “N”type or “∧”type. The double wall thickness, radial diameter and microfibril angle of compression wood were bigger than that of opposite wood, but the tangential diameter was opposite. It was found from the analysis results of SAS software that the differences of other indexes between compression wood and opposite wood were significant except cell wall/cavity ratio and width/diameter ratio. It was shown from the analysis results of all the characteristics that the growth rate of ‘Huangjinwan’ was the slowest and “No.3 Horse Bell” was the fastest among the five cultivars.

References

[1]北京林业大学. 森林利用学[M]. 北京:中国林业出版社,1997.
[2]林金星,李正理. 马尾松正常木与应压木的比较解剖[J]. 植物学报,1993,35(3):201-205.
[3]邢世岩. 银杏种质资源评价与良种选育[M]. 北京:中国环境科学出版社,2004.
[4]Timell T E. Karl Gustav Sanio and the first scientific description of compression wood[J]. IAWA Bull, 1980, 1(4): 147-153.
[5]刘盛全,江泽慧. 刺楸木材应拉木材性研究[J]. 林业科学,1996,32(5):470- 475.
[6]Timell T E. Ultrastructure of compress wood in Ginkgo biloba[J]. Wood Science Technology, 1978, 12: 89-103.
[7]Takhtajan A L. 高等植物[M]. 匡可任,王文采,译. 北京:科学出版社,1963.
[8]Li Z L, Li J X. Wood anatomy of the stalactitelike branches of ginkgo[J]. IAWA Bull, 1991, 12(3): 251-255.
[9]周崟,姜笑梅. 中国裸子植物材的木材解剖学及超微构造[M]. 北京:中国林业出版社,1994.
[10]张顺泰,王炳云,丁修堂. 银杏管胞分子的变异性和相关性[J]. 山东农业大学学报,1990,21(4):31-35.
[11]费本华,江泽慧,阮锡根. 银杏木材微纤丝角及其与生长轮密度相关模型的建立[J]. 木材工业,2000,14(3):13-15.
[12]陶仁中,张杰. 间歇性淹水对池杉木材管胞形态径向变异影响的研究[J]. 安徽农业大学学报,1998,25(3):300-303.
[13]潘彪,徐朝阳,王章荣. 杂交鹅掌楸木材解剖性质及其径向变异规律[J]. 南京林业大学学报:自然科学版,2005,29(1):79-82.
[14]洑香香,杨文忠,方升佐. 木材微纤丝角研究的现状和发展趋势[J]. 南京林业大学学报:自然科学版,2002,26(6):83-87.
[15]陈承德,黄日明,林元辉,等. 马尾松枝桠材应压木与对应木的化学及物理性质研究[J]. 东北林业大学学报,1995,23(6):52-55.
[16]Saka S. Relationship between microfibrillar angles and lignin content in the S2 layer of softwood tracheids[J]. Cellulose Chemistry and Technology, 1987, 21(3): 225-231.
[17]樊永明,张志毅,谢益民. 三倍体毛白杨纸浆材纤维形态变异及采伐周期研究[J]. 国际造纸,2002,21(6):24-26.
[18]符韵林,徐峰,唐黎明,等. 南带产区不同立地类型间的杉木木材解剖[J]. 北京林业大学学报,2005,27(1):10-13.

Last Update: 2009-05-30