我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

武夷山不同海拔土壤水溶性有机碳的含量特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2009年04期
Page:
48-52
Column:
研究论文
publishdate:
2009-07-30

Article Info:/Info

Title:
Content character of WSOC among four vegetation types along an elevation gradients in Wuyi Mountain
Author(s):
ZHOU Yan1 XU Xiangen1 RUAN Honghua1* WANG Jiashe2 FANG Yanhong2 WU Yanyu2 XU Zikun2
1.Jiangsu Key Laboratory of Forestry and Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Administrative Bureau of Wuyishan National Nature Reserve, Wuyishan 354300, China
Keywords:
vegetation types elevation soil watersoluble organic carbon (WSOC) soil factors Wuyi Mountain
Classification number :
S714
DOI:
10.3969/j.jssn.1000-2006.2009.04.010
Document Code:
A
Abstract:
Soil watersoluble organic carbon (WSOC) is an important component in soil carbon cycling. The soil watersoluble organic carbon among four vegetation types with an elevation gradients and the correlations between soil WSOC and some other soil factors were analyzed. The results revealed: (1)The amount of WSOC became bigger when the elevation went higher, and it became smaller when the soil layers became deeper; (2)The percentage of WSOC to TOC varied from 0.02 to 0.16, the highest was Alpine meadow soil layer of 10—25 cm, the lowest was evergreen broadleaf forest 25—40 cm soil layer; (3)In each site and different soil layers, WSOC positively correlated with TOC, SMBC, soil moisture, and TN, respectively. However, WSOC was not found to be associated with soil temperature and pH. The results provided theoretical foundation for further elucidate soil carbon circle character among different vegetation types with an elevation gradients.

References

[1]Lal R. Global potential of soil carbon sequestration to mitigate the greenhouse effect[J]. Crit Rev Plant Sci, 2003, 22: 151-184.
[2]Ellert B H, Gregorich E G. Management induced changes in the actively cycling fractions of soil organic matter[C]//Mcfee W W, Kelly J M. Carbon Forms and Functions in Forest Soils. Soil Science Society of America, Inc, Wisconsin, Madison, USA, 1995, 119-138.
[3]李淑芬,俞元春,何晟. 土壤溶解性有机碳的研究进展[J]. 土壤与环境,2002,11(4):422-429.
[4]俞元春,何晟,李炳凯,等. 杉林土壤溶解有机碳吸附及影响因素分析[J]. 南京林业大学学报:自然科学版,2005,29(2):15-18.
[5]Hunter M D, Linnen C R, Reynolds B C. Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians[J]. Pedobiologia, 2003, 47: 231-244.
[6]Zou X M, Ruan H H, Fua Y, et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigationincubation procedure[J]. Soil Biology & Biochemistry, 2005, 37: 1923-1928.
[7]Rodeghiero M, Cescattu A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, 2005, 11: 1024-1041.
[8]张甲珅,陶澎,曹军,等. 土壤水溶性有机碳测定中的样品保存与前处理方法[J]. 土壤通报,2003,31(4):175-176.
[9]倪进治,徐建民,谢正苗,等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报,2003(4):724-730.
[10]Smolander A, Loponen J, Suominen K, et al. Organic matter characteristics and C and N transformations in the humus layer under two tree species, Betula pendula and Picea abies[J]. Soil Biology & Biochemistry, 2005,37:130-138.
[11]徐秋芳,姜培坤,沈泉. 灌木林与阔叶林土壤有机碳库的比较研究[J]. 北京林业大学学报,2005,27(2):18-22.
[12]方燕鸿.武夷山米槠、甜槠常绿阔叶林的物种组成及多样性分析[J]. 生物多样性,2005,13(2):148-155.
[13]林大仪. 土壤学实验指导[M]. 北京:中国林业出版社,2004.
[14]韩成卫,李忠佩,刘丽,等. 去除溶解性有机质对红壤水稻土碳氮矿化的影响[J]. 中国农业科学,2007,40(1):107-113.
[15]Anderson T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology & Biochemistry, 1989, 21: 471-479.
[16]林滨,陶澍,曹军,等. 伊春河流域土壤与沉积物中水溶性有机物的含量与吸着系数[J]. 中国环境科学,1996,16(4):307-310.
[17]陶澍,曹军. 山地土壤表层水溶性有机物淋溶动力学模拟研究[J]. 中国环境科学,1996,16(6):410-414.
[18]Hagedom F, Kaiser R, Feyen H, et al. Effect of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil[J]. Envir Qual, 2000, 29: 288-297.
[19]王清奎,汪思龙,冯宗炜,等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学杂志,2005,25(3):513-519.
[20]俞元春,李淑芬. 江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J]. 土壤,2003,35(5):424-428.
[21]Godde M, David M B, Christ M J, et al. Carbon mobilization from the forest floor under red spruce in the northeastern USA[J]. Soil Biology & Biochemistry, 1996, 28: 1181-1189.
[22]Baath E. Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenizationcentrifigation[J]. Soil Biology & Biochemistry, 1992, 24: 1157-1165.
[23]Yano Y, Mcdowell W H, Kinner N. Quantification of biodegradable dissolved organic carbon in soil solution with flowthrough bioreactors[J]. Soil Science Society of America Journal, 1998, 62: 1556-1564.
[24]汪文霞,周建斌,严德翼,等. 黄土区不同类型土壤微生物量碳、氮和可溶性有机碳、氮的含量及其关系[J]. 水土保持学报,2006,20(6):103-106.
[25]Arnold S S, Fernandez I J, Rustad L E. Microbial response of an acid forest soil to experimental soil warming[J]. Biology and Fertility of Soils, 1999, 30(3): 239-1244.
[26]Van Gestel M, Ladd J N, Amato M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology & Biochemistry, 1992, 24(2): 103-111.
[27]焦坤,李忠佩. 红壤稻田土壤溶解有机碳含量动态及其生物降解特征[J]. 土壤,2005,37(3):272-276.
[28]陶澍. 引滦水中不同形态天然有机物的卤代活性[J]. 环境科学学报,1994,14(1):19-23.
[29]Jardine P M, Weber N L, Mccarthy J F. Mechanisms of dissolved organic carbon adsorption on soil[J]. Soil Science Society of America Journal, 1989, 53: 1378-1385.
[30]Kaiser K,Guggenberger G, Zech W. Sorption of DOM and DOM fractions to forest soils[J]. Geoderma, 1996, 74: 281-303.

Last Update: 2009-07-30