我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

台湾桤木与黑麦草复合模式细根和草根的分解及养分动态(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2009年04期
Page:
67-71
Column:
研究论文
publishdate:
2009-07-30

Article Info:/Info

Title:
Fine root and grass root decomposition and nutrient dynamics in an intercropping system of Alnus formosanaLolium multiflorum
Author(s):
WANG Jing12 LI Xianwei1* ZHANG Jian1 RONG Li1 PAN Yan1
1.State Key Laboratory of Ecological Forestry Engineering, Sichuan Agricultural University, Ya’an 625014, China; 2.Forest Bureau of Zigong City, Zigong 643000, China
Keywords:
fine root grass root decomposition nutrient dynamics Alnus formosana Lolium multiflorum
Classification number :
S718.55
DOI:
10.3969/j.jssn.1000-2006.2009.04.014
Document Code:
A
Abstract:
This study aims to investigate the rate of decomposition and nutrient dynamics of fine root and grass root in a complex ecosystem of Alnus formosanaLolium multiflorum with one year buried bag experiment. The yearly dry weight remaining rate were 39.47%, 32.23%, 37.11%, 16.93% and 24.05% for fine root 0—1 mm, 1—2 mm, 0—2 mm, grass root and mixed root respectively. The process of the decomposition of fine root and grass root was simulated by Olson exponential equation, which showed good degree of fitting (p<0.01). At the initial phase of fine root decomposition, N and P and Ca concentrations increased, while K concentration declined adversely, and the Mg concentration had fluctuated slightly. The concentration of N and K for grass root and mixed root had the same trend as fine root during the decomposition process. However, the other nutrient concentrations demonstrated different trend. The residual rate of K, Mg and P demonstrated the same trend as dry weight remaining rate during the decomposition process of fine root and grass root. On the contrary, the residual rate of N and Ca decreased slowly. The releasing rate of K was the most quickly among all the elements, and the next were Mg, P, N and Ca lied in the last. The decomposition rate of mixed process and the releasing rate of N, P, K and Ca approximately lied between the fine root (0—2 mm) which decomposed by itself and grass root. On the contrary, the releasing rate of Mg was larger than the fine root (0—2 mm) which decomposed by itself and grass root.

References

[1]Jalota R K, Dalal R C, Harms B P, et al. Effects of litter and fine root composition on their decomposition in a Rhodic Paleustalf under different land uses[J]. Communications in Soil Science and Plant Analysis, 2006, 37: 1859-1875.
[2]Robinson C H, Kirkham J B, Littlewood R. Decomposition of root mixtures from high arctic plants: a microcosm study[J]. Soil Biology Biochemistry, 1999, 31: 1101-1108.
[3]范冰,李贤伟,张健,等. 退耕还林地三倍体毛白杨与黑麦草复合模式细根和草根的分解动态[J]. 林业科学,2007,43(增1):1-6.
[4]范冰,李贤伟,张健,等. 三倍体毛白杨黑麦草复合生态系统林木细根与草根的分解及养分动态[J]. 应用生态学报,2005,16(11):2030-2034.
[5]金钊,杨玉盛,懂云社,等. 福建万木林自然保护区米槠和杉木细根分解动态[J]. 地理研究,2007,26(3):491-499.
[6]廖利平,扬跃军,汪思龙,等. 杉木、火力楠纯林及混交林细根分布、分解与养分归还[J]. 生态学报,1999,19(3):342-346.
[7]张秀娟,吴楚,梅莉,等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报,2006,17(8):1370-1376.
[8]Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1996, 187: 159-219.
[9]Ruess R W, Van Cleve K, Yarie J, et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior[J]. Canadian Journal Forest Research, 1996, 26: 1326-1336.
[10]温达志,魏平,张佑昌,等. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志,1998,17(2):1-6.
[11]Berg B, Berg M P, Bottner P, et al. Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality[J]. Biogeochemistry, 1993, 20: 127-159.
[12]杨效东, 邹晓明. 西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较[J]. 植物生态学报,2006,30(5):791-801.
[13]董鸣,王义凤,孔繁志,等. 陆地生物群落调查观测与分析[M]. 北京:中国标准出版社,1996.
[14]Schuur E A G. The effect of water on decomposition dynamics in mesic to wet Hawaiian Montane forests[J]. Ecosystems, 2001, 4: 259-273.
[15]王敬,李贤伟,荣丽,等. 森林土壤氮贮量及氮素输入过程研究进展[J]. 世界林业研究,2008,21(1):14-19.
[16]单建平,陶大立,王淼,等. 长白山阔叶红松林细根动态[J]. 应用生态学报,1993,4(3):241-245.
[17]李培芝,范世华,王力华,等. 杨树细根及草根的生产力及周转研究[J]. 应用生态学报, 2001,12(6):829-832.
[18]陈光水,杨玉盛,何宗明,等. 福建柏和杉木人工林细根生产力、分布及周转的比较[J]. 林业科学,2004,40(4):15-21.
[19]杨玉盛,陈光水,林鹏,等. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报,2003,23(9):1719-1730.
[20]Ruth D Y, Byung B P, Steven P H. The vertical and horizontal distribution of roots in northern hardwood stands of varying age[J]. Canadian Journal Forest Research, 2006, 36: 450-459.
[21]Agren G I, Bosatta E. Quality: A bridge between theory and experiment in soil organic matter studies[J]. Oikos, 1996, 76: 522-528.
[22]Moore T R, Trofymow J A. Litter decomposition rates in Canadian forests[J]. Global Change Biology, 1999, 5: 75-82.
[23]Scott N A, Binkley D. Foliage litter quality and annual net N mineralization: Comparison across North American forest sites[J]. Oecologia, 1997, 111: 151-159.
[24]Ostertag R, Hobbie S E. Early stages of root and leaf decomposition in Hawaiian forest: effect of nutrient availability[J]. Oecologia, 1999, 121: 564-573.
[25]翟明普,蒋三乃,贾黎明. 沙地杨树刺槐混交林细根动态[J]. 北京林业大学学报,2002,24(5):39-44.
[26]翟明普,蒋三乃,贾黎明. 杨树刺槐混交林细根养分动态研究[J]. 林业科学,2004,40(4):46-51.

Last Update: 2009-07-30