我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

木材微纤丝角和密度与弹性模量的关系(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2009年04期
Page:
113-116
Column:
研究论文
publishdate:
2009-07-30

Article Info:/Info

Title:
Relationship of wood MFA and density with elastic modulus
Author(s):
WU Yan12 ZHOU Dingguo1* WANG Siqun12ZHANG Yang1 XING Cheng2
1.College of Wood Science and Technology, Nanjing Forestry University, 210037; 2.Tennessee Forest Products Center, University of Tennessee, Knoxville, Tennessee, 37996, USA
Keywords:
white oak red oak elastic modulus wood density microfibril angle SilviScan
Classification number :
TS653
DOI:
10.3969/j.jssn.1000-2006.2009.04.024
Document Code:
A
Abstract:
The microfibril angle (MFA) and wood density of white oak (Quercus alba) and red oak (Quercus rubra) were measured by SilviScan system, the elastic modulus (MOE) being also calculated. The mean value of MOE in red oak (Quercus rubra) sample was 16.34 GPa higher than white oak (Quercus alba) sample (13.11 GPa). There was no significant difference of MOE in red oak from pith to bark. However, white oak sample showed high MOE and MFA for the first 40 mm, which probably corresponded to juvenile wood; from 40 mm position to bark direction the change was not distinct. The value of MFA was lower in red oak than in white oak along radial direction within the measured 45 growth rings.

References

[1]American Hardwood Expert Coucil. US red Oakoverpowering charming[J]. Materials & Technology, 2008, 62(4): 118-119.
[2]Alden H A. Hardwoods of North America[C]//Gen Tech Rep FPLGTR83. Madison WI. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1995.
[3]Cave I D. The anisotropic elasticity of the plant cell wall[J]. Wood Science and Technology, 1968, 2(4): 268-278.
[4]Cave I D. The longitudinal modulus of Pinus radiata[J]. Wood Science and Technology, 1969, 3(1): 40-48.
[5]Tze W T, Wang S Q, Rials T G, et al. Nanoindentation of wood cell wall: Continuous stiffness and hardness measurements[J]. Composites Part A 3, 2007, 8: 945-953.
[6]Cown D J, Herbert J, Ball R D. Modelling Pinus radiate lumber characteristics Part 1[J]. Mechanical properties of small clears. NZ J For Sci, 1999, 29: 203-213.
[7]Evans R, Ilic J. Rapid prediction of wood stiffness from microfibril angle and density[J]. Forest Products Journal, 2001, 51(3): 53-57.
[8]Holmberg H. Influence of grain angle on Brinell hardness of scots pine (Pinus sylvestris L.)[J]. Holz als Rohund Werkstoff, 2000, 58: 91-95.
[9]Kollman F F P, Cté W A. Principle of wood science and technology[M]. Berlin: SpringerVerlag, 1968.
[10]Miyajima H. Studies in the indentation hardness of wood[J]. Res Bull For Hokkaido University, 1963, 22(2): 539-607.
[11]Ylinen A. ber den Einfluβ der Rohwichte und des Sptholzanteils auf die Brinellh?rte des Holzes[J]. Holz als Rohund Werkstoff, 1934, 6(4): 125-127.
[12]Evans R. Rapid scanning of microfibril angle in increment cores by Xray diffractometry[C]//B.G. Butterfield. Microfibril Angle in Wood. Pro. IAWA/IUFRO International Workshop on the Significance of Microfibril Angle to Wood Quality, New Zealand: University of Canterbury Press, 1997.
[13]Evans R. A variance approach to the Xray diffractometric estimation of microfibril angle in wood[J]. Appita, 1999, 51: 53-57.
[14]尹思慈. 木材学[M]. 北京:中国林业出版社, 1996.

Last Update: 2009-07-30