我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

抗寒锻炼期间影响白皮松针叶电阻抗图谱参数的生理指标(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年02期
Page:
24-30
Column:
研究论文
publishdate:
2010-03-30

Article Info:/Info

Title:
The physiological indices affecting parameters of electrical impedance spectroscopy in Pinus bungeana Zucc. needles during frost hardening
Author(s):
LI Yaqing12 ZHANG Gang1* DONG Shenghao1 QUE Shupeng3 ZHU Liang3 JIN Xiumei3
1.College of Horticulture, Agricultural University of Hebei, Baoding 071001, China; 2.Everbright Purchase Properties Co.Ltd., Beijing 100045, China; 3.The Nursery in Beijing Thirteen Tombs Forestry Center, Beijing 102200, China
Keywords:
frost hardening physiological parameter electrical impedance spectroscopy Pinus bungeana Zucc.
Classification number :
S718.43文
DOI:
10.3969/j.jssn.1000-2006.2010.02.006
Document Code:
A
Abstract:
The electrical impedance spectroscopy (EIS) was analyzed to oneyearold needles of Pinus bungeana Zucc.in an 8year provenance field trial at the Nursery in Beijing Thirteen Tombs with provenances of Mangshan of Beijing, Xiaoyi of Shanxi, and Liangdang of Gansu. The parameters of EIS and the activities of superoxide dismutase (SOD), the activities of peroxidase (POD), the content of malondialdehyde (MDA), the content of soluble protein, the content of proline, the chlorophyll content and the content of dry matter in nonfrost exposed needles were tested with different provenances. The relations between EIS and physiological parameters were analyzed. The frost hardiness (FH) of needles was measured by means of the visual scoring of damage (VSD) after artificial freezing test. The results showed that: (1) Both the EIS parameters and the physiological parameters changed during frost hardening, and the EIS parameters and some physiological parameters differed significantly in certain stages of frost hardening, especially in the early stage, which was in accordance with the differences of FH in different provenances. (2) The EIS parameters membrane time constant τm and extracellular resistance re correlated negatively with the chlorophyll content (the correlation coefficient r were -0.91 and -0.68, respectively), the β correlated negatively with the dry matter content (r=-0.74), while the intracellular resistance ri and re had positive correlation with the dry matter content (r were 0.69 and 0.58, respectively), as well as the β with the MDA content (r=0.68). (3) The β correlated positively with the FH assessed by the VSD method (r=0.85), whereas the ri and re did negatively (r were -0.79 and -0.66, respectively).

References

[1]陈禅友,汪汇东,丁毅. 低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化[J]. 园艺学 报,2005,32(5):911-913.
[2]林善枝,李雪平,张志毅. 低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响[J]. 林业科学,2002 (11):137-141.
[3]刘慧民,王崑,李奇石,等. 五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律[J]. 东 北林业大学学报,2003,31(4):74-75.
[4]Greer D H. Electrical impedance and its relationship to frost hardiness in Pinus radiate [J]. New Zealand Journal of Forestry Science, 1983, 13(1): 80-86.
[5]Stout D G. Effect of cold acclimation on bulk tissue electrical impedance.Ⅰ.Measurements with birdsfoot trefoil at subfreezing temperatures[J]. Plant Physiology, 1988, 86: 275-282.
[6]Repo T, Zhang M. Modelling woody plant tissues using a distributed electrical circuit[J]. Journal of Experimental Botany, 1993, 44: 977-982.
[7]Repo T, Zhang G, Ryypp A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins[J]. Trees, 2000, 14: 456-464.
[8]Mancuso S, Rinaldelli E. Response of young mycorrhizal and nonmycorrhizal plants of olive tree (Olea europaea L.) to saline conditions.Ⅱ.Dynamics of electrical impedance parameters of shoots and leaves[J]. Advances in Horticultural Science, 1996, 10: 135-145.
[9]刘晓红,王国栋,张钢. 干旱胁迫下小麦叶片的电阻抗参数与生理参数关系[J]. 西北植物学报,2007,27 (5):970-976.
[10]刘晓红,王国栋,张钢. 外源重金属胁迫对小麦叶片电阻抗参数的影响[J]. 农业环境科学学 报,2007,26(6):2014-2020.
[11]Mancuso S. Seasonal dynamics of electrical impedance parameters in shoots and leaves relate to rooting ability of olive (Olea europaea) cuttings[J]. Tree Physiology, 1998, 19: 95-101.
[12]Zhang G, Ryypp A, Repo T. The electrical impedance spectroscopy of Scots pine needles during cold acclimation[J]. Physiologia Plantarum, 2002, 115: 385-392.
[13]Repo T, Zhang G, Ryypp A, et al. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. Journal of Experimental Botany, 2000, 51: 2095-2107.
[14]Vainola A, Repo T. Impedance spectroscopy in frost hardiness evaluation of Rhododendron leaves[J]. Annals of Botony, 2000, 86: 799-805.
[15]Zhang G, Ryypp A, Vapaavuori E, et al. Quantification of additive response and stationarity of frost hardiness by photoperiod and temperature in Scots pine[J]. Canadian Journal of Forest Research, 2003,33: 1772-1784.
[16]许绍惠,边立琪,郭泳,等. 白皮松抗寒性及抗寒育苗技术的研究[J]. 林业科学,1994,30(6):497-505.
[17]Cappiello P E, Dunham S W. Seasonal variation in lowtemperature tolerance of Vaccinium angustifolium Ait[J]. Hort Science, 1994, 29: 302-304.
[18]Burr K E B, Hawkins C D B, L’Hirondelle S J L, et al. Methods for Measuring Cold Hardiness of Conifers[G]//Bigras F J, Colombo S J. Conifer Cold Hardiness. Dordrecht: The Netherlands: Kluwer Academic Publishers, 2001.
[19]Zhang M I N, Repo T, Willison J H M, et al. Electrical impedance analysis in plant tissues: on the biological meaning of ColeCole α in Scots pine needles[J]. European Biophysics Journal, 1995, 24: 99-106.
[20]Repo T, Zhang M, Ryypp A, et al. Effects of freezethaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation[J]. Journal of Experimental Botany, 1994, 45: 823-833.
[21]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[22]张宪政. 作物生理研究法[M]. 北京:农业出版社,1992.
[23]张钢,刘民,任元新. 春季白皮松实生苗的脱锻炼与再锻炼[J]. 植物生理学通讯,2005,41(6):761-763.
[24]Repo T, Lappi J. Estimation of standard error of impedanceestimated frost resistance [J]. Scandinavian Journal of Forest Research, 1989, 4: 67-74.
[25]Jin Y H, Tao D L, Du Y J. Freezing tolerance, pigments and SOD of fire conifers in Shenyang[J]. Journal of Integrative plant Biology, 1990, 32(9): 702-706.
[26]Repo T, Oksanen E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones[J].

Last Update: 2010-05-14