我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

BoxCox变换对数量性状基因座位检测效率的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年03期
Page:
35-38
Column:
研究论文
publishdate:
2010-06-29

Article Info:/Info

Title:
Effect of BoxCox transformation on quantitative trait loci detection YIN Tongming
Author(s):
YIN Tongming
Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
Keywords:
BoxCox transformation quantitative trait loci positional cloning
Classification number :
S722
DOI:
10.3969/j.jssn.1000-2006.2010.03.008
Document Code:
A
Abstract:
Quantitative trait loci (QTL) analysis is the precondition and basis for positional cloning of major genes underlying quantitative traits. Normality transformation of quantitative trait data using BoxCox formula has significant effect on QTL detection. In this paper, a case study on poplar is carried out to demonstrate the application of BoxCox formula for normality transformation and the effect of data distribution on QTL analysis. The results are as followings: QTL detection is significantly affected by the data distribution. Without normality transformation, some significant QTLs may be missed. Similar variation trends are observed on the heat plots of LOD scores and LOD peaks are found to appear in the same positions in the charts established by LOD scores derived before and after the normality transformation. On chromosome 4, 3 LOD peaks appear at 40—60 cm, 80— 100 cm and 130—150 cm intervals respectively both before and after transformation. However, the corresponding LOD peaks are found to increase to the significant level after transformation. Especially, the increment of the first peak is about 3 folds higher than that before BoxCox transformation, which means a relatively strong QTL in the corresponding position. The same scenario is also observed on chromosome 8 in this study.

References

[1]Frary A, Nesbitt T C, Frary A, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289, 85-88.
[2]Li C, Zhou A, Sang T. Rice domestication by reducing shattering[J]. Science, 2006, 311: 1936-1939.
[3]]Wang H, NussbaumWagler T, Li B, et al. The origin of the naked grains of maize[J]. Nature, 2005, 436: 714-719.
[4]Yan L, Loukoianov A, Blechl A, et al. The wheat VRN2 gene is a flowering repressor downregulated by vernalization[J]. Science, 2004, 303: 1640-1644.
[5]杨维才,瞿礼嘉,袁明,等. 中国植物科学若干领域重要研究进展[J]. 植物学报,2009,44:379-409.
[6]Xu S, Atchley W R. Mapping quantitative trait loci for complex binary diseases using line crosses[J]. Genetics, 1996, 143: 1417-1424.
[7]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics[EB/OL]. Raleigh, NC: North Carolina State University, 2006. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
[8]Box G E P. Cox DRAn analysis of transformations[J]. J Roy Statistical Society: Series B, 1964, 26: 211-252.
[9]Ranjan P, Yin TM, Zhang XY, et al. BioinformaticsBased Identification of Candidate Genes from QTLs Associated with Cell Wall Traits in Populus[J]. Bioenergy Res, 2009, DOI 10.1007/s12155-009-9060-z. http://springerlink.com/content/c47820725j506345/fulltext.pdf.
[10]Wang X, Piao Z, Wang B, et al. Robust Bayesian mapping of quantitative trait loci using Studentt distribution for residual[J]. Theor Appl Genet, 2009, 118: 609-617.
[11]Anderson T W, Darling D A. Asymptotic theory of certain “goodnessoffit” criteria based on stochastic processes[J]. Ann Math Stat, 1952, 23: 193-212.
[12]Grattapaglia D, Sederoff R R. Geneticlinkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcrossmapping strategy and RAPD markers[J]. Genetics, 1994, 137: 1121-1137.
[13]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.
[14]Zeng Z B. Precision mapping of quantitative traits loci[J]. Genetics, 1994, 136: 1457-1468.
[15]Van Ooijen J W, Voorrips R E. JoinMap 3.0, Software for the calculation of genetic linkage maps[R]. Wageningen, The Netherlands: Plant Research International, 2001.

Last Update: 2010-06-29