我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

NaCl胁迫对构树、光叶楮生理及细胞结构的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年03期
Page:
77-82
Column:
研究论文
publishdate:
2010-06-29

Article Info:/Info

Title:
Effects of NaCl stress on physiological characteristic and cell ultrastructure in leaves of two Broussonetia papyrifera varieties
Author(s):
JIANG Zeping1 XIAO Xiaojun23 HE Kaiyue2*
1.Forestry of Academy Jiangsu Province, Nanjing 211153, China; 2.College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China; 3.Hanzhong Agricultural Science Institute Shaanxi Province, Hanzhong 723000, China
Keywords:
NaCl stress Broussonetia papyrifera Vent B.kazinoki Sied physiological characteristic cell ultrastructure salt tolerance
Classification number :
S718
DOI:
10.3969/j.jssn.1000-2006.2010.03.016
Document Code:
A
Abstract:
The membrane permeability, MDA contents, SOD and POD activities and cell ultrastructure of the oneyear seedlings of two Broussonetia papyrifera varieties under different NaCl treatments were studied. The results were as follows: (1)With an increase in NaCl stress and treating time, the membrane permeability and MDA contents in both cultivars increased considerably. The membrane permeability and MDA contents in the B.papyrifera cultivar increased more quickly thus suffered greater damage at higher NaCl concentrations. The activities of SOD and POD increased firstly and decreased later for both cultivars. The coordinated changes of activities among the antioxidant enzymes of SOD and POD could scavenge ROS and maintain a balance of ROS accumulation in cells to protect membrane structure. (2)The cell ultrastructure in leaves of two cultivars didn’t destroy under 0.1 % and 0.2 % NaCl and mitochondrial grew in number. With the increasing NaCl stress, the cell ultrastructure changed remarkably, the cellular organs for both cultivars became deformed and vacuole augmented under NaCl. Besides, the nucleolus diminished obviously and nucleolus matter agglomerated and the mitochondria structure was indistinct. Altogether, we concluded the B.kazinoki cultivar had greater salttolerance.

References

[1]李爱华,陈慧玲,李海军,等. 日本构树与本地构树差异及丰产栽培技术模式研究[J]. 湖北林业科技,2008(2):7-9.
[2]乔其川,颜培岭,黄建庭,等. 光叶楮嫩枝扦插繁殖技术研究[J]. 江苏林业科技,2008,35(2):20-22.
[3]蒋泽平,梁珍海,李荣锦,等. 光叶楮组织培养快速繁殖技术的研究[J]. 江苏林业科技,2006,33(6):10-13.
[4]朱大雷,孙玉梅,何连芳,等. 光叶楮韧皮纤维生物制浆菌种的选育[J]. 中国酿造,2008(3):23-25.
[5]马养民,张志伟,史清华. 光叶楮叶有效成分的分析[J]. 西北林学院学报,2008,23(3):173-175.
[6]朱广廉,钟海文,张爱琴. 植物生理学实验[M]. 北京:北京大学出版社,1990.
[7]李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000.
[8]郝再彬,苍晶,徐仲. 植物生理实验[M]. 黑龙江:哈尔滨工业大学出版社,2004.
[9]肖雯,贾恢先,蒲陆梅. 几种盐生植物抗盐生理指标的研究[J]. 西北植物学报,2000,20(5):818-825.
[10]Akita S, Cabuslay G S. Physiological basis of differential response to salinity in rice cultivars[J]. Plant and Soil, 1990, 123, 277-294.
[11]龚吉蕊,张立新,赵爱芬,等. 油蒿抗旱生理生化特性研究初报[J]. 中国沙漠,2002,22(4):387-392.
[12]周兴元,曹福亮. 土壤盐分胁迫对三种暖季型草坪草保护酶活性及脂质过氧化作用的影响[J]. 林业科学研究,2005,18(3):336-341.
[13]杨传平,焦喜才,刘文祥,等. 树木的细胞膜透性与抗盐性[J]. 东北林业大学学报,1997,25(1):1-3.
[14]Flowers T J, Torke P F, YEO A R. The mechanism of salt tolerance in halophytes[J]. Ann Rev Plant Physiol, 1977, 28: 89-121.
[15]Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salttolerant and saltsensitive cultivars of cotton[J]. Crop Sci, 1994, 34: 706-714.
[16]辛承松,唐筱,王洪征,等. 鲁棉14幼苗生长对氯化钠胁迫的反应及微量元素、激素处理的效应[J]. 棉花学报,2002,14(2):108-112.
[17]吴凯,周晓阳. 环境胁迫对植物超微结构的影响[J]. 山东林业科技,2007(3):79-83.
[18]Smith M M, Hodson M J. Saltinduced ultrastructural damage to mitochondria in root tips of a saltsensitive ecotype of Agrostis stolonifera[J]. Journal of Experimental Botany, 1982, 33(136): 886-895.
[19]余叔文,汤章诚. 植物生理与分子生物学[M]. 北京:科学出版社,1999.
[20]左志锐,高俊平,穆鼎,等. 盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较[J]. 园艺学报,2006,33 (2):429-432. (责任编辑郑琰燚)第34卷第3期 2010年5月南京林业大学学报(自然科学版) Journal of Nanjing Forestry University (Natural Science Edition)Vol.34, No.3 May, 2010

Last Update: 2010-06-29