我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

雪灾对毛竹林土壤呼吸与微生物生物量碳的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年03期
Page:
126-130
Column:
研究论文
publishdate:
2010-06-29

Article Info:/Info

Title:
The influence of snow storm on soil respiration and soil microbial biomass carbon of Phyllostachys heterocycla cv.pubescens forest
Author(s):
LIU Sheng1 DING Jiumin12 XU Hanmei1 WANG Jiashe3 XU Zikun3 RUAN Honghua1*
1.Jiangsu Key Laboratory of Forest Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Lianyungang Technical College, Lianyungang 222006, China; 3.Administrative Bureau of Wuyishan National Nature Reserve, Wuyishan 354315, China
Keywords:
snow storm phyllostachys heterocycla cv.pubescens forest soil respiration soil microbial biomass carbon Wuyi Mountain
Classification number :
S714;X43
DOI:
10.3969/j.jssn.1000-2006.2010.03.026
Document Code:
A
Abstract:
The 2008 snow storm in southern China was a huge natural disturbance to the forest ecosystem.We conducted an experiment in Phyllostachys heterocycla cv.pubescens forest in Wuyi Mountain to understand the influence of snow storm on major soil ecological factors and soil ecological processes. We divided the damage level of phyllostachys heterocycla cv.pubescens forest cause by the snow storm into three types i.e. heavy, middle and low level. The rate of damaged bamboo in heavy, middle and low level was 43.7 %, 21.8 %, 10.3 %, respectively. The aboveground biomass input to the ground caused by the snow storm was 221, 1.04 and 0.60 kg/m2 , respectively. The canopy closure was significantly negatively correlated with soil moisture, soil respiration, soil temperature and soil microbial biomass carbon, respectively soil microbial biomass carbon, soil temperature and soil respiration were significantly correlated with the aboveground biomass loss. There were significant difference in soil respiration and microbial biomass carbon among different damage levels. The open of the canopy and the input of the litterfall and woody debris to the floor may lead to the changes of soil moisture, soil temperature, soil respiration, and soil microbial biomass carbon, and might alter the biological and ecological processes of phyllostachys heterocycla cv.pubescens forest.

References

[1]Lavnyy V, Lssig R. Extent of storms in the Ukrainian Carpathians[C]//Ruck B, Kottmeier C, Mattheck C, et al. Proceedings of the International Conference of Wind Effects on Trees. Germany: Published by Lab Building, Environment Aerodynamics, Institute of Hydrology, University of Karlsruhe, 2003.
[2]Vlinger E, Fridman J. Modelling probability of snow and wind damage in Scots pine stands using tree characteristics[J]. Forest Ecology and Management, 1997, 135: 303-313.
[3]李秀芬,朱教君,王庆礼,等. 森林的风/雪灾害研究综述[J]. 生态学报,2005,25(1):149-157.
[4]施政,汪家社,何容,等. 武夷山不同海拔土壤呼吸及其主要调控因子[J]. 生态学杂志,2008,27(4):563-568.
[5]张翊,邓荣华. 武夷山区毛竹生长气候条件探讨[J]. 竹子研究汇刊,1990,9(2):37-46.
[6]Ruan H H, Zou X M, Scatena F N, et al. A synchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J]. Plant and Soil, 2004, 260: 147-154.
[7]何东进,洪伟,吴承祯,等. 武夷山毛竹天然林生物量与能量分配规律及其与人工林的比较研究[J]. 西北植物学报,2003,23(2):291-296.
[8]林大仪. 土壤学实验指导[M]. 北京:中国林业出版社,2004.
[9]Jenkinson D S, Powlson D S. The effects of biocidal treatments on metabolism in soil V. A method for measuring soil biomass[J]. Soil Biology and Biochemistry, 1976, 8: 189-202.
[10]Liang B C, Mackenzie A F, Schnitzer M, et al. Managenmentinduced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology Fertility Soils, 1998, 26: 88-94.
[11]McGill W B. Dynamics of soil microbial biomass and water soluble organic C in Breton L after 50 years of cropping to two rotations[J]. Soil Science, 1986, 66: 1-19.
[12]Dale D C, Cantu J M, White V H, et al. Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a longleaf pine habitat[J]. Ecological Indicators, 2001, 1(2): 113-121.
[13]Lodge. Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system[J]. Agroforestry Systems, 2001, 68(1): 27-36.
[14]Yoneda T, Kirita H. Fall rate, accumulation and decomposition of wood litter[G]//Kira T, Ono Y, Hosokawa T. Biological Production in a Warmtemperate Evergreen Oak Forest of Japan. Tokyo: University of Tokyo Press, 1978.
[15]高志红,张万里,张庆费. 森林凋落物生态功能研究概况及展望[J]. 东北林业大学学报,2004,32(6):80-83.
[16]刘守龙,肖和艾,童成立,等. 亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点[J]. 农业现代化研究,2003,24(4):279-282.
[17]何容,汪家社,王国兵,等. 武夷山不同海拔高度土壤微生物量的变化特征[J]. 生态学杂志,2009,28(3):394-399.
[18]王国兵,阮宏华,唐燕飞,等. 北亚热带次生栎林与火炬松人工林土壤微生物生物量碳的季节动态[J]. 应用生态学报,2008,19(1):38-41.
[19]王国兵,郝岩松,王兵,等. 土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J]. 北京林业大学学报,2006,28(2):74-79.
[20]温明章,于丹,郭继勋. 凋落物层对东北羊草草原微环境的影响[J]. 武汉植物学研究,2003,21(5):395-400.
[21]林波,刘庆,吴彦,等. 川西亚高山针叶林凋落物对土壤理化性质的影响[J]. 应用与环境生物学报,2003,9(4):346-351.
[22]任海,彭少麟,刘鸿先,等. 小良热带人工混交林的凋落物及其生态效益研究[J]. 应用生态学报,1998,9(5):458-462.
[23]McGill W B, hunt H W, Woodmansee R G, et al. Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils[J]. Ecological Bulletin, 1981, 33: 49-115.
[24]Christ M J, David M B. Dynamics of extractable organic carbon in spodosol forest floors[J]. Soil Biology & Biochemistry, 1996, 28: 1171-1179.

Last Update: 2010-06-29