我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

围湖造田不同土地利用方式土壤水溶性有机碳的变化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年05期
Page:
109-114
Column:
森林碳汇研究专栏
publishdate:
2010-10-08

Article Info:/Info

Title:
Soil water soluble organic carbon in reclaimed land from lake under different land uses
Author(s):
WANG Ying1 RUAN Honghua1* HUANG Liangliang1 FENG Yuqing2 QI Yan3
1.Jiangsu Key Loboratory of Forestry Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China; 2.Suzhou Wetland Protection and Administration Station, Suzhou 215128, China; 3.Wujiang Agricultural and Forestry Bureau, Wujiang 215200, China
Keywords:
reclaiming land from lake land uses soil water soluble organic carbon soil microbial biomass carbon seasonal dynamics
Classification number :
S154.1
DOI:
10.3969/j.jssn.1000-2006.2010.05.024
Document Code:
A
Abstract:
Reclaimed land from a lake area is a kind of human disturbance that has emerged in large numbers since the late 1950s in China. In order to understand the characteristics of soil water soluble organic carbon (WSOC) in the reclaiming land from lake under different land uses in the Xiaodian Lake area, the concentrations and seasonal dynamics of WSOC in the 0—40 cm soil layer were analyzed. The results showed that the effects of land uses on WSOC concentrations were significant. The concentrations of WSOC under cropland were lower than those in forests at 0—10 cm deep of soil layer, and the concentrations under coniferous forest were higher than those in broadleaf forest. At 10—20 cm and 20—40 cm deep of soil layer the WSOC concentrations under cropland were higher than those in forests, and the concentrations under coniferous forest were lower than those in broadleaf forest. The concentrations of WSOC under each forest land decreased sharply with increasing soil depth. Except for December, the vertical change of WSOC concentrations in cropland soil was different from forests: the highest concentrations were at 10—20 cm depth while the lowest were at 0—10 cm depth.Seasonal dynamics of WSOC under each land use were significantly.The concentrations of WSOC in autumn and winter were higher than those in spring and summer, generally.WSOC concentrations in the impoldering land were higher relative to the upland of the same climate zone and lower compared with other wetland, indicating that the stability of WSOC in the impoldering land was lower than that in the upland and higher than that in the wetland with the alternation of wettingdrying.Thus it is important to note the effect of reclaiming land from a lake on the carbon cycle in terms of global climate change.

References

[1]王艮梅,周立祥. 陆地生态系统中水溶性有机物动态及其环境学意义[J]. 应用生态学报,2003,14(11):2019-2025. [2]黄靖宇,宋长春,宋艳宇,等. 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J]. 环境科学,2008,29(5):1380-1387. [3]万忠梅,宋长春,杨桂生,等. 三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J]. 环境科学学报,2009,29(2):406-412. [4]刘丽,周连仁,苗淑杰. 长期施肥对黑土水溶性碳含量和碳矿化的影响[J]. 水土保持研究,2009,16(1):59-62. [5]卢红梅,王世杰. 喀斯特石漠化过程对土壤活性有机碳的影响[J]. 水土保持通报,2009,29(1):12-17. [6]毛艳玲,杨玉盛,崔纪超,等. 土地利用方式对土壤活性有机碳分布的影响[J]. 福建林学院学报,2008,28(4):338-342. [7]仝川,董艳,杨红玉. 福州市绿地景观土壤溶解性有机碳、微生物量碳及酶活性[J]. 生态学杂志,2009,28(6):1093-1101. [8]徐秋芳,姜培坤. 不同森林植被下土壤水溶性有机碳研究[J]. 水土保持学报,2004,18(6):84-87. [9]石玲,戴万宏. 淮北淤土不同利用方式下土壤有机碳组分的差异[J]. 安徽师范大学学报:自然科学版,2008,31(6):585-589. [10]张金波,宋长春,杨文燕. 小叶樟湿地表土水溶性有机碳季节动态变化及影响因素分析[J]. 环境科学学报,2005,25(10):1397-1402. [11]刘淑霞,王宇,赵兰坡,等. 冻融作用下黑土有机碳数量变化的研究[J]. 农业环境科学学报,2008,27(3):984-990. [12]万忠梅,宋长春,郭跃东,等. 毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J]. 生态学报,2008,28(12):5980-5986. [13]黄黎英,曹建华,周莉,等. 不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J]. 生态环境,2007,16(4):1282-1288. [14]韩成卫,李忠佩,刘丽,等. 溶解性有机碳在红壤水稻土中的吸附及其影响因素[J]. 生态学报,2008,28(1):445-451. [15]张剑,汪思龙,王清奎,等. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报,2009,17(1):41-47. [16]汪景宽,李丛,于树,等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报,2008,28(12):6165-6171. [17]周江敏,陈华林,唐东民,等. 秸秆施用后土壤溶解性有机质的动态变化[J]. 植物营养与肥料学报,2008,14(4):678-684. [18]张磊,张磊. 土地耕作后微生物量碳和水溶性有机碳的动态特征[J]. 水土保持学报,2008,22(2):146-150. [19]葛全胜,赵名茶,郑景云. 20世纪中国土地利用变化研究[J]. 地理学报,2000,55(6):698-706. [20]杨林章,徐琪. 土壤生态系统[M]. 北京:科学出版社,2005. [21]李忠佩,焦坤,吴大付. 不同提取条件下红壤水稻土溶解有机碳的含量变化[J]. 土壤,2005,37(5):512-516. [22]Schinner F, hlinger R, Kandeler E, et al. Methods in Soil Biology[M]. Berlin: SpringerVerlag, 1996. [23]陈国潮. 土壤微生物生物量熏蒸提取法中转换系数KEC的测定研究[J]. 土壤通报,2002,33(5):392-395. [24]国家林业局. 森林土壤分析方法[M]. 北京:中国标准出版社,1999. [25]Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J]. Soil Biology & Biochemistry, 2002, 34(5): 651-660. [26]权伟,徐侠,王丰,等. 武夷山不同海拔高度植被细根生物量及形态特征[J]. 生态学杂志,2008,27(7):1095-1103. [27]Campbell C A, Biederbeck V O, Wen G, et al. Seasonal trends in selected soil biochemical attributes: effects of crop rotation in the semiarid prairie[J]. Canadian Journal of Soil Science, 1999, 79: 73-84. [28]Campbell C A, Lafond G P, Biederbeck V O, et al. Seasonal trends in soil biochemical attributes:effects of crop management on a black chernozem[J]. Canadian Journal of Soil Science, 1999, 79: 85-97. [29]Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000, 165(4): 277-304. [30]Schimel J P, Clein J S. Microbial response to freezethaw cycles in tundra and taiga soils[J]. Soil Biology & Biochemistry, 1996, 28(8): 1061-1066.

Last Update: 2010-10-08