我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

江苏句容下蜀次生栎林的空气动力学参数研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2010年06期
Page:
61-65
Column:
研究论文
publishdate:
2010-11-30

Article Info:/Info

Title:
Aerodynamic parameters of secondary oak forest in Xiashu Jurong county of Jiangsu province
Author(s):
ZHANG Xueshi JIANG Yan XUE Jianhui* HU Haibo WU Yongbo
Jiangsu Key Laboratory of Forestry Ecological Engineering, Nanjing Forestry University, Nanjing 210037, China
Keywords:
secondary oak forest aerodynamic parameter zeroplane displacement roughness length temperature variance method
Classification number :
S718
DOI:
10.3969/j.jssn.1000-2006.2010.06.014
Document Code:
A
Abstract:
Based on the data of threedimensional ultrasonic anemometer on the 30 m of micrometeorological tower at secondary oak forest of Xiashu in period of 2008.03—2009.02, zero plane displacement d and roughness length Z0 were calculated with temperature variance method(TVM) and the impact factors such as wind direction, wind velocity, friction velocity and leaf area index LAI were analyzed. The results showed that both the zeroplane displacement d and the roughness length Z0 both obviously increased and then decreased as the crown leaves growth and then defoliated. The average d and Z0 were 15.20 m and 1.86 m in growing season and 14.25 m and 1.24 m in nongrowing season. d did not change a lot in different wind directions, while Z0 obviously changed in two main wind direction 90°—180° and 300°—30° with average Z0 value 1.23 m and 1.81 m respectively. Z0 decreased with increasing wind velocity or increased with increasing friction velocity, while it changed a little when wind velocity increased to a certain value. d and Z0 both increased with increasing LAI, while Z0 had a small change when LAI increased to a certain value. According to the effective data ratio, it was appropriate that the coefficients of TVM C3evaluated 3.5 and C1 evaluated 0.9 to 1.05.

References

[1]于贵瑞,孙晓敏. 陆地生态系统通量观测的原理与方法[M]. 北京:高等教育出版社,2006. [2]周艳莲,孙晓敏,朱治林,等. 几种不同下垫面地表粗糙度动态变化及其对通量机理模型模拟的影响[J]. 中国科学:D辑. 地球科学,2006,36(S1):244-254. [3]周艳莲,孙晓敏,朱治林,等. 几种典型地表粗糙度计算方法的比较研究[J]. 地理研究,2007,26(5):887-896. [4]Bosveld F C. Derivation of fluxes from profiles over a moderately homogeneous forest[J]. Boundary Layer Meteorology,1997,84:289-327. [5]何奇瑾,周广胜,周莉,等. 盘锦芦苇湿地空气动力学参数动态特征及其影响因素分析[J]. 气象与环境学报,2007,23(4):7-12. [6]赵晓松,关德新,吴家兵,等. 长白山阔叶红松林的零平面位移和粗糙度[J]. 生态学杂志,2004,23(5):84-88. [7]张一平,宋清海,于贵瑞,等. 西双版纳热带季节雨林风时空变化特征初步分析[J]. 应用生态学报,2006,17(1):11-16. [8]韩素芹,刘彬贤,解以扬. 利用255m 铁塔研究城市化对地面粗糙度的影响[J]. 气象,2008,34(1):54-58. [9]Tsai J L, Tsuang B J. Aerodynamic roughness over an urban area and over two farmlands in a populated area as determined by wind profiles and surface energy flux measurements[J]. Agricultural and Forest Meteorology, 2005, 132: 154-170. [10]Pruegera J H, Kustasb W P, Hipps L E, et al. Aerodynamic parameters and sensible heat flux estimates for a semiarid ecosystem[J]. Journal of Arid Environments, 2004, 57: 87-100. [11]张宏升,陈家宜. 非单一水平均匀下垫面空气动力学参数的确定[J]. 应用气象学报,1997,8(3):310-315. [12]陈家宜,王介民,光田宁. 一种确定地表粗糙度的独立方法[J]. 大气科学,1993,17(1):21-26. [13]Martano P. Estimation of surface roughness length and displacement height from singlelevel sonic anemometer data[J]. Journal of Applied Meteorology, 2000, 39: 708-715. [14]刘和平,刘树华,朱廷曜,等. 森林冠层空气动力学参数的确定[J]. 北京大学学报:自然科学版,1997,33(4):522-528. [15]Rotach M W. Determination of the zero plane displacement in an urban environment[J]. Boundary Layer Meteorology,1994,67:187-193. [16]姜志林. 下蜀森林生态系统定位研究论文集[C]. 北京:中国林业出版社,1992. [17]王国兵. 北亚热带次生栎林与火炬松人工林土壤碳动态研究[D]. 南京:南京林业大学,2008. [18]Wyngaard J C, Izumi Y, Collins S A. Behavior of the refractive index structure parameter near the ground[J]. Journal of the Optical Society of America, 1971, 61: 1646-1650. [19]Shaw R H, Pereira A R. Aerodynamic roughness of a plant canopy: a numerical experiment[J]. Agricultural Meteorology, 1982, 26: 51-65. [20]董治宝,Donald W F,高尚玉. 直立植物防沙措施粗糙特征的模拟实验[J]. 中国沙漠,2000,9(3):260-263.

Last Update: 2010-12-27