我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

短角幽天牛成虫林间种群数量的混沌特性(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2011年02期
Page:
39-42
Column:
研究论文
publishdate:
2011-03-28

Article Info:/Info

Title:
Research on the chaotic characteristics of Spondylis buprestoides(L.) adult population in forest
Author(s):
CHEN Huihua1ZHAO Jinnian2XU Zhihong3*
1.Forest Bureau of Xianju County, Xianju 317300,China;2.The Research Institute of Subtropical Forestry, CAF, Fuyang 311400, China; 3.School of Agriculture and Food Science, Zhejiang Agriculture & Forestry University,Lin′an 311300, China
Keywords:
Spondylis buprestoides chaos embedding dimension correlation dimension the largest Lyapunov exponent
Classification number :
S7633
DOI:
10.3969/j.jssn.1000-2006.2011.02.008
Document Code:
A
Abstract:
Based on chaos theories, the chaotic characteristics of Spondylis buprestoides adult population in forest were identified by power spectrum analysis, correlation dimension, embedding dimension, largest Lyapunov exponent and principal component method, the one dimensional time series of S. buprestoides adult population was extended to multidimensional phase space, to obtain the main chaotic characteristics indicators. The results showed that the adult population sequence of S. buprestoides had chaotic characteristics, which was judged by various chaotic determination methods. Attractors were existed in extended multidimension phase space, and also there were of fractal dimension characteristics. When the delay time τ=2, the embedding dimension m=12, the correlation dimension D=3260 9 in related phase dimension and the largest Lyapunov exponent λ1=0288 6. Therefore the adult population of S. buprestoides could be forecasted by reconstructed phase space method based on one dimension time series chaotic characteristics.

References

参考文献: [1]张真,李典谟,张培义,等.自然种群中混沌的检测及其在种群动态研究中的意义[J].生态学报,2003,23(10):1951-1962.
[2]汪丽娜,陈晓宏,李粤安,等.月径流时间序列的混沌特性分析[J].生态环境,2008,17(6):2436-2439.
[3]May R M. Biological populations with nonoverlapping generations:stable points, stable cycles and chaos[J].Science, 1974(186):645-647.
[4]May R M. Simple mathematical models with very complex dynamics[J].Nature,1976(261):459-467.
[5]May R M, Oster G F. Bifurcations and dynamic complexity in simple ecological models[J].American Naturalist, 1976(110):573-599.
[6]Allen J C. Are natural enemy populations chaotic[J]. See Ref, 1989(70):190-205
[7]Logan J A, Allen J C. Nonlinear dynamics and chaos in insect population[J]. Annu Rev Entomol, 1992(37):455-477.
[8]Blasius B, Huppert A, Stone L. Complex dynamics and phase synchronization in spatially extended ecological systems[J]. Nature, 1999(399):354-359
[9]马飞,丁宗泽,沈龙元,等. 褐飞虱发生的一维时间序列相空间重构及混沌吸引子维数的确定[J].生态学报,2001,21(9):1542-1548.
[10]赵锦年,林长春,姜礼元,等. M99-1引诱剂诱捕松墨天牛等松甲虫的研究[J].林业科学研究,2001,14(5):523-529.
[11]赵锦年,唐淑琴. 短角幽天牛成虫林间种群动态的监测研究[J].林业科学研究,2007,20(4):528-531.
[12]张建军,张润志,陈京元. 松材线虫媒介昆虫种类及其扩散能力[J].浙江林学院学报,2007,24(3):350-356.
[13]王敏敏,叶建仁,王云华. 引诱剂防治松材线虫病及其配套技术[J].南京林业大学学报:自然科学版,2006,30(4):129-131.
[14]张静,洪新兰.小麦条锈病受灾率时间序列混沌特征研究[J].西北农林科技大学学报:自然科学版,2005,33(9):63-67.
[15]付强,李国良.三江平原地下水埋深时间序列的混沌研究[J].水土保持研究,2008,15(3):31-34.
[16]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
[17]黄廷林,韩晓刚,卢金锁.基于Lyapunov指数的混沌预测方法及在水质预测中的应用[J].西安建筑科技大学学报:自然科学版,2008,40(6):846-851.
[18]Grassberger P,Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D:Nonlinear Phenomena,1983,9(1):189-208.
[19]陈敏,叶晓舟. 混沌时间序列的判定方法研究[J].信息技术,2008(6):23-25,54.
[20]傅军,丁晶,邓育仁. 嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995(1):74-80.

Last Update: 2011-04-13