我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

涝渍胁迫下3个树种幼苗生理特性的响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2011年05期
Page:
11-15
Column:
研究论文
publishdate:
2011-09-30

Article Info:/Info

Title:
Effects of flooding stress on the physiological adaption metabolism of three tree species
Author(s):
ZHANG Wangxiang1*
1.College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China;2.Science & Technology Center, Jinchang Forestry Bureau, Jinchang 737100, China
Keywords:
Taxodium distichum Carya illinoensis Sapium sebiferum waterlogging and flooding stress antioxidant antioxygen osmotic regulation
Classification number :
S718
DOI:
10.3969/j.jssn.1000-2006.2011.05.003
Document Code:
A
Abstract:
Based on field simulation experiment of oneyearold seedlings during 60 days, the preliminary research, aimed to understand the waterlogging or flooding tolerance and adaptation mechanisms of three different three species(i.e. Taxodium distichum, Carya illinoensis, Sapium sebiferum), was conducted. The results were as follows:(1) In differn level, the three tree species all showed perfect ability tolerant to waterlogging or flooding. Under the first 30 days of waterlogging and flooding stress, superoxide dismutase (SOD) activity, ascorbic acid peroxidase (POD) activity, ascorbic acid (ASA) content, reducing glutathione (GSH) content, proline(Pro) content and soluble protein (SP) content in the leaves or roots of the three tree species, both showed significant rise. (2)However, there was a remarkable different in their waterlogging or flooding resistant ability among the three tree species. T. distichum had the strongest tolerance to waterlogging or flooding, C. illinoensis the middle, and S. sebiferum the most weakest. During the first 50 days of waterlogging or flooding stress, the average increment of SOD, ASAPOD, ASA, GSH activeness and Pro and SP content in the leave or roots of T. distichum were not only greatly higher than the ones in other two tree species, but also kept the continuing growth tendency and maintained at high levels, while those indexes in other two tree species showed a trend of sharp decline in 30 days of waterlogging or flooding. (3) For the 3 trees, water resistant mechanism was probably related to their regulation ability of seedling structure, antioxidant enzymes and antioxidant synthesis, etc.

References

[1]Ponnamperuma E N. Effects of flooding on soils[C]// Kozlowski T T. Flooding and Plant Growth. Orland: Academic Press Inc, 1984.
[2]Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment[J]. Jour Exp Bot, 1996, 47(295): 145-159.
[3]Visser E J W, Voesenek L A C J, Vartapetian BB, et al. Flooding and plant growth[J]. Annals of Botany, 2003, 91: 107-109.
[4]Perata P, Alpi A. Plant responses to anaerobiosis[J]. Plant Science, 1993, 93: 1-17.
[5]Sachs M M, Subbaiah C C, Saab I N. Anaerobic gene expression and flooding tolerance in maize[J]. Journal of Experimental Botany, 1996, 47: 1-15.
[6]Ricoult C, Echeverria L O, Cliquet J B , et al. Characterization of alanine amino transferase (AlaAT) multigene family and hypoxic response in young seedlings of the model legume Medicago truncatula[J]. Journal of Experimental Botany, 2006, 57: 3079-3089.
[7]康云艳, 郭世荣, 段九菊.根际低氧胁迫对黄瓜幼苗根系呼吸代谢的影响[J]. 应用生态学报, 2008, 19(3): 583-587.
[8]王文泉, 张福锁.高等植物厌氧适应的生理及分子机制[J]. 植物生理学通讯, 2001, 37(1): 63-70.
[9]Biemelt S, Keetman U, Albrecht G. Reaeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings[J]. Plant Physiol, 1998, 116(2): 651-658.
[10]Ma F W, Cheng L L, The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate glutathione pathway than the shaded peel[J]. Plant Science, 2003, 165(4): 819-827.
[11]Ma F W, Cheng L L. Exposure of the shaded side of apple fruit to full sun leads to upregulation of both xanthophyll cycle and the ascorbate glutathione cycle[J]. Plant Science, 2004, 166: 1479-1486.
[12]汪安琳,高强,陈裕菊. 油菜素内酯对湿地松苗的生理作用[J]. 南京林业大学学报, 1995, 19(4): 1-6.
[13]张殿中, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990, 26(4): 62-65.
[14]张志良. 植物生理学试验指导[M]. 北京:高等教育出版社, 1990.
[15]Newsome R D, Kozlowski T T, Tang Z C. Responses of seedling to flooding of soil[J]. Canada Journal of Botany, 1982, 60: 1688-1695.
[16]Sena Gomes A R, Kodowski T T. Efects of flooding on growth of Eucalyptus camalduleensis and E. globules seedlings[J]. Oecologia, 1980, 46: 139-142.
[17]刘瑞仙, 靖元孝, 肖林, 等. 淹水深度对互叶白千层幼苗气体交换、叶绿素荧光和生长的影响[J]. 生态学报, 2010, 30(19): 5113-5120.
[18]唐罗忠, 黄宝龙, 生原喜久雄, 等. 高水位条件下池杉根系的生态适应机制和膝根的呼吸特性[J]. 植物生态学报, 2008, 32(6): 1258-1267.
[19]蒋明义, 郭绍川. 水分亏缺诱导的氧化胁迫和植物抗氧化作用[J]. 植物生理学通讯, 1996, 32(2): 144-150.
[20]Mishra N P, Mishra R K, Singhal G S. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors[J]. Plant Physical, 1993, 102:903-908.
[21]赵可夫. 植物在淹水胁迫下的适应性[J]. 生物学通报, 2003, 38(12):11-14.
[22]曾淑华, 赵正雄, 覃鹏, 等. 淹水对转超氧化物歧化酶或过氧化物酶基因烟草某些生理生化指标的影响[J]. 植物生理学通讯, 2005, 49(5): 603-606.
[23]王义强, 谷文众, 姚水攀, 等. 淹水胁迫下银杏主要生化指标的变化[J]. 中南林学院学报, 2005, 25(4): 78-80.
[24]潘向燕. 杂交鹅掌楸不同无性系对淹水胁迫的反应[D]. 南京:南京林业大学, 2006.
[25]黄利斌, 杨静, 何开跃, 等. 纳塔栎和南方红栎2年生苗耐水湿性试验[J].北京林业大学学报, 2009, 37(5):7-9.
[26]唐罗忠, 徐锡增, 方升佐.土壤涝渍对杨树和柳树苗期生长及生理性状影响的研究[J]. 应用生态学报, 1998, 9(5): 471-474.
[27]Tang Zhangcheng. The accumulation of free proline and its roles in waterstressed sorghum seedlings[J]. Acta Phytophysiologica Sinica, 1989, 15(1): 105-110.
[28]余叔文, 汤章城. 植物生理与分子生物学[M]. 北京: 科学出版社, 1999.
[29]陈亚鹏, 陈亚宁, 李卫红, 等. 干旱胁迫下胡杨脯氧酸累积特点分析[J].干旱区地理, 2003, 26(4): 420-424.
[30]范苏鲁, 苑兆和, 冯立娟, 等. 干旱胁迫对大丽花生理生化指标的影响[J]. 应用生态学报, 2011, 22(3): 651-657.
[31]时丽冉, 刘志华. 干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J]. 草地学报, 2010, 18(5): 673-677.
[32]张香凝, 崔令军, 王保平, 等. 土壤干旱胁迫对Larrea tridentata叶片膜脂过氧化和保护酶活性的影响[J]. 生态环境学报, 2010, 19(11): 2587-2591.
[33]陈忠, 苏维埃. 豌豆热激蛋白npc60对酶的高温保护功能及其机理[J]. 科学通报, 1999, 44(20): 2171-2175.
[34]秦嗣军, 赵德英, 吕德国, 等. 水分胁迫对寒富苹果叶片碳氮代谢的影响[J]. 吉林农业大学学报, 2010, 32(4): 402-406.
[35]康俊梅, 杨青川, 樊奋成. 干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报, 2005, 13(3): 199-202.
[36]陈成升, 谢志霞, 刘小京. 盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J].植物研究, 2009, 29(6): 708-713.

Last Update: 2011-09-30