我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

纳米材料在植物细胞生物学研究中的应用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2011年06期
Page:
121-126
Column:
综合述评
publishdate:
2011-11-28

Article Info:/Info

Title:
Applications of nanomaterials in plant cell biology researches
Author(s):
XIA Bing12 DONG Chen1 LU Ye1 CHEN Jinhui1 SHI Jisen1*
1. Key Laboratory of Forest Genetics & Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China; 2. College of Science, Nanjing Forestry University, Nanjing 210037, China
Keywords:
nanomaterials plant cell gene carrier fluorescent probe
Classification number :
Q813
DOI:
10.3969/j.jssn.1000-2006.2011.06.025
Document Code:
A
Abstract:
Nanomaterials have been widely applied on targeting medical treatments, animal cell imaging or transgenic research. Transformation of molecules into plant cells is more complicated due to its cell wall, an extra barrier to the cell membrane. 〖JP2〗Recently, applications of nanomaterials on plant cell have been focused on cellular imaging and transgenic researches. Herein, we mainly introduced the approaches of the synthesis and functionalization of quantum dots, and their recent applications on plant cell biology. In addition, we also reviewed the category, characteristics and of gene nanocarriers, and their applications on plant transgenic researches including walled cells and protoplast cells. The disadvantages of existing gene nanocarriers were large size and cytotoxicity, which could inhibit their further applications on plant cell biology. Therefore, the design and synthesis of novel nanomaterials for plant cells would be important in future.

References

[1]Medintz I, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labeling and sensing [J]. Nat Mater, 2005, 4: 435-446.
[2]Michalte X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307: 538-544.
[3]Fern ndez J M C, Pereiro R, Medal A S, et al. The use of luminescent quantum dots for optical sensing [J]. Trends Anal Chem, 2006, 25: 207-218.
[4]Azzazy H M E, Mansour M M H, Kazmierczak S C. From diagnostics to therapy: prospects of quantum dots [J]. Clin Biochem, 2007, 40: 917-927.
[5]〖JP2〗He Y, Zhong Y L, Panf F, et al. Highly luminescent waterdispersible silicon nanowires for longterm immunofluorescent cellular imaging [J]. Angew Chem, 2011, 123: 3136-3139.〖JP〗
[6]Aylel W D, Chen H M, Su W N, et al. Controlled synthesis of CadSe quantum dots by a microwaveenhanced process: a green approach for mass production [J]. Chem Eur J, 2011, 17: 5737-5744.〖JP〗
[7]He Y, Zhong Y L, Panf F, et al. Photo and pH stable, highly luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging [J]. J Am Chem Soc, 2009, 131: 4434-4438.
[8]Ravindran S, Kim S, Martin R, et al. Quantum dots as biolabels for the localization of small plant adhesion protein [J]. Nanotechnology, 2005, 16: 1-4.
[9]Yu G H, Liang J O, He Z K, et al. Quantum dotmediated detection of γaminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco [J]. Chem Biol, 2006, 13: 723-731.
[10]Wang Q L, Chen B, Liu P, et al. Calmidulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration [J]. J Biol Chem, 2009, 284: 12000-12007.
[11]Exteberria E, Gonzalez P, Fernandez E B, et al. Fluid phase endocytic uptake of artificial Nanospheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments [J]. Plant Signal Behav, 2006, 1: 196-200.
[12]Santos A R, Miguel A S, Tomaz L, et al. The impact of Cd/SeZnS quantum dots in cells of Medicago sativa in suspension culture [J]. J Nanobiotechnology, 2010, 8: 24-38.
[13]董琛,施季森,陆叶,等.聚乙二醇介导鹅掌楸悬浮细胞与CdSe/ZnS量子点纳米颗粒共孵育的互作特征[J].中国科学:C辑,2011,41(6):494-501.
[14]Eggenberger K, Merkulov A, Darbandi M, et al. Visualization of plant microtubules by direct immunofluorescence based on semiconductor nanocrystals [J]. Bioconjugate Chem, 2007, 18: 1879-1886.
[15]Salem A, Searson P C, Leong K W. Multifunctional nanorods for gene delivery [J]. Nat Mater, 2003, 10: 668-671.
[16]〖JP3〗Thomas M, Klibanov A M. Conjugation to gold nanoparticles enhances polyrthylenimine’s transfer of plasmid DNA into mammalian cells [J]. Proc Natl Acad Sci USA, 2003, 100: 9138-9143.〖JP〗
[17]Zhang X Q, Chen M, Lam R, et al. Polymerfunctionalized nanodiamond platforms as vehicles for gene delivery [J]. ASC Nano, 2009, 3: 2609-2616.
[18]Xia T, Kovochich M, Liong M, et al. Polyethyleneimine coating enhanced the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs [J]. ACS Nano, 2009, 310: 3273-3286.
[19]Ferrandes R, Roy V, Wu H C, et al. Engineered biological nanofactories trigger quorum sensing response in targeted bacteria [J]. Nat Nanotechnol, 2010, 5: 213-217.
[20]杨文胜,高明远,白玉白.纳米生物材料与生物技术[M].北京:化学工业出版社,2005.
[21]Shaw C H, Leemans J, Montagu M V, et al. A general method for the transfer of cloned genes to plant cells [J]. Gene, 1983, 23: 315-334.
[22]吴世宣,张春霞,张英华,等.构建具侵染性的花椰菜花叶病毒克隆[J].科学通报,1988,24:1891-1894.
[23]Hussain M M, Melcher U, Essenberg R C. Infection of evacuolated turnip protoplasts with liposomepackaged cauliflower mosaic virus [J]. Plant Cell Rep, 1985(4): 58-62. 
[24]Lazzeri P A, Brettschneider R, Luhrs R, et al. Stable transformation of barley via PEGinduced direct DNA uptake into protoplasts [J]. Theor Appl Gene, 1991, 81: 437-444.
[25]Fromm M E, Taylor L P, Walbot V. Expression of genes transferred into monocot and dicot plant cells by electroporation [J]. Proc Natl Acad Sci USA, 1985, 82: 5824-5828.
[26]Sanford J C, Klein T M, Wolf E D, et al. Delivery of substances into cells and tissues using a particle bombardment process [J]. J Part Sci & Technol, 1987, 5: 27-37.
[27]卢雄斌,龚祖埙.植物转基因方法及进展[J].生命科学,1998(3):126-129.
[28]Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants [J]. Nat Nanotechnol, 2007(2): 295-300.
[29]李颖,崔海信,宋瑜,等.PEI介导外源基因进入植物细胞的瞬时表达[J].中国农业科学,2009,42(6):1918-1923.
[30]宋瑜,李颖,崔海信,等.两种阳离子纳米基因载体及植物基因介导效果的研究[J].生物技术通报,2009(6):75-80.
[31]Silva A T, Nguyen A, Ye C M, el al. Conjugated polymer nanoparticles for effective siRNA delivery to tobaccao BY2 protoplasts [J]. BMC Plant Biology, 2010, 10: 291-305.
[32]Pasupathy K, Lin S J, Hu Q, et al. Direct plant gene delivery with a poly(amidoamine) dendrimer [J]. Biotechnol J, 2008, 3: 1078-1082.
[33]Liu Q L, Chen B, Wang Q L, et al. Carbon nanotubes as molecular transporters for walled plant cells [J]. Nano Lett, 2009, 9: 1007-1010.
[34]Serag M F, Kaji N, Gaillard C, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells [J]. Acs Nano, 2011, 5: 493-499.
[35]Wang Q, Chen J N, Zhang H Y, et al. Synthesis of water soluble quantum dots for monitoring carrierDNA nanoparticles in plant cells [J]. J Nanosci Nanotechno, 2011, 11: 2208-2214.
[36]柏杉山,张静妹,李青,等.量子点环境暴露与细胞毒性效应研究进展[J].生态毒理学报,2009,4(1):14-20.
[37]Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors [J]. Environ Health Perspect, 2006, 114: 165-172.
[38]Hoshino A, Fujioka K, Oku T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification [J]. Nano Lett, 2004, 4: 2163-2169.
[39]GagnéF, Auclair J, Turcotte P, et al. Ecotoxicity of CdTe quantum dots to freshwater mussels: Impacts on immune system, oxidative stress and genotoxicity [J]. Aquatic Toxicology, 2008, 86: 333-340.
[40]Liang J G, Xie H Y, Ai X P, et al. A novel method for the selective determination of silver (I) ion [J]. Chin Chem Lett, 2004, 15: 1319-1322.
[41]Navarro E, Piccapietra F, Wagner B, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii [J]. Environ Sci Technol, 2008, 42: 8959-8964.
[42]Navarro E, Baun A, Behra R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi [J]. Ecotoxicity, 2008, 17: 372-386.
[43]Proseus T E, Boyer J S. Turgor pressure moves polysaccharides into growing cell walls of Chara corallinia [J]. Ann Bot, 2005, 95 : 967-979.
[44]Eggenbenger K, Mink C, Wadhwani P, et al. Using the peptide Bp100 as a cellpenetrating tool for the chemical engineering of actin filaments within living plant cells [J]. Chembiochem, 2011, 12: 132-137.
[45]Kang Z H, Tsang C H A, Zhang Z D, et al. A polyoxometalateassisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires [J]. J Am Chem Soc, 2007, 129: 5326-5327.
[46]Kang Z H, Liu Y, Tsang C H A, et al. Watersoluble silicon quantum dots with fine wavelengthtunable photoluminescence [J]. Adv Mater, 2009, 21: 661-664.
[47]Warner J H, Hoshino A, Yamamoto K, et al. Watersoluble photoluminescent silicon quantum dots [J]. Angew Chem, 2005, 44(29): 4550-4554.
[48]Nayfeh M H, Barry N, Therrien J, et al. Observation of a magic discrete family of ultrabright Si nanoparticles [J]. Appl Phys Lett, 2002, 80: 841-843.
[49]Xia B, Xiao S J, Guo D J, et al. Biofunctionalisation of porous silicon (PS) surfaces by using homobifunctional crosslinkers [J]. J Mater Chem, 2006, 16: 570-578.
[50]Park J H, Guo L, Maltzahn G V, et al. Biodegradable luminescent porous silicon nanoparticles for  in vivo applications [J]. Nat Mater, 2009, 8: 331-336.

Last Update: 2011-11-28