我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物天然免疫系统研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2012年01期
Page:
129-136
Column:
综合述评
publishdate:
2012-01-30

Article Info:/Info

Title:
Recent advances in plant immune system
Author(s):
CHEN Ying TAN Biyue HUANG Minren*
Poplar Germplasm Enhancement & Variety Improvement Lab of Jiangsu Province, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
plants innate immune system PTI ETI
Classification number :
Q948
DOI:
10.3969/j.jssn.1000-2006.2012.01.027
Document Code:
A
Abstract:
Many plantassociated microbes are pathogens that impair plant growth and reproduction. Plants have evolved a series of complicated defense mechanism against pathogens during their long term process of coevolution. Plants innate immune system efficiently detects and wards off potentially dangerous microbes. A first layer of this system is based on sensitive perception of pathogenor microbeassociated molecular patterns (PAMPs) through pattern recognition receptors (PRRs) at the plants cell surface,which would active mitogenactivated protein kinase(MAPK) signaling cascade and burst early responses in plant resistance to pathogen attacks. The first layer recognizes and responds to many classes of microbes, including nonpathogens. With pathogens produce effectors to inhibit PTI, plants can perceive such effectors through additional receptors, typically nucleotide binding leucinerich repeat (NBLRR) proteins, to mount a second layer of defense called effect or triggered immunity (ETI). Here, we highlight recent literature on plants innate immune system, and based on a detailed understanding of plant immune function, we should focus on the combination of the use of PTI and ETI to expand the antimicrobial spectrum of plant effectively and improve plantss diseaseresistance.

References

[1]Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature,2001, 411:826-833.
[2]Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? [J] Nature Immunol, 2005, 6: 973-979.
[3]Chisholm S T, Coaker G, Day B, et al. Host microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124: 803-814.
[4]Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444: 323-329.
[5]Wu Y, Wood M D, Tao Y, et al. Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death[J]. The Plant Journal, 2003, 33(1): 131-137.
[6]Boller T, Felix G. A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by patternrecognition receptors[J]. Annual Review of Plant Biology, 2009, 60(1): 379-406.
[7]deYoung B J, Innes R W. Plant NBSLRR proteins in pathogen sensing and host defense[J]. Nature Immunol, 2006, 7:1243-1249.
[8]Thorsten N,Frédéric B,Birgit K, et al. Innate immunity in plants and animals: striking similarities and obvious differences[J]. Immunological Reviews,2004,198:249-266.
[9]Felix G, Duran J D, Volko S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Journal, 1999, 18(3): 265-276.
[10]Naito K, Taguchi F, Suzuki T, et al. Amino acid sequence of bacterial microbeassociated molecular pattern flg22 is required for virulence[J]. Molecular PlantMicrobe Interactions, 2008, 21(9): 1165-1174.
[11]Nicaise V, Roux M, Zipfel C. Recent advances in PAMPtriggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm[J]. Plant Physiology, 2009, 150(4): 1638-1647.
[12]Kunze G, Zipfel C, Robatzek S, et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants[J]. The Plant Cell, 2004, 16(12): 3496-3507.
[13]Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428(6984): 764-767.
[14]Bedini E, De Castro C, Erbs G, et al. Structuredependent modulation of a pathogen response in plants by synthetic Oantigen polysaccharides[J]. Journal of the American Chemical Society, 2005, 127(8): 2414-2416.
[15]Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation[J]. Current Biology, 2008, 18(14): 1078-1083.
[16]Iizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptorlike kinase, LysM RLK1/CERK1, to chitin in vitro[J]. Journal of Biological Chemistry, 2010, 285(5): 2996-3004.
[17]GmezGmez L, Boller T. FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6): 1003-1011.
[18]Robatzek S, Chinchilla D, Boller T. Ligandinduced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis[J]. Genes and Development, 2006, 20(5): 537-542.
[19]Sun W, Dunning F M, Pfund C, et al. Withinspecies flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2dependent defenses[J]. The Plant Cell, 2006, 18(3): 764-779.
[20]Robatzek S, Bittel P, Chinchilla D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Molecular Biology, 2007, 64(5): 539-547.
[21]Takai R, Isogai A, Takayama S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular PlantMicrobe Interactions, 2008, 21(12): 1635-1642.
[22]Zipfel C, Kunze G, Chinchilla D, et al. Perception of the Bacterial PAMP EFTu by the receptor EFR restricts Agrobacteriummediated transformation[J]. Cell, 2006, 125(4): 749-760.
[23]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928): 742-744.
[24]Lee S W, Han S W, Sririyanum M, et al. A typeI secreted, sulfated peptide triggers XA21mediated innate immunity[J]. Science, 2009, 36: 850-853.
[25]Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415: 977-983.
[26]Gao M, Liu J, Bi D, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogenactivated protein kinase cascade to regulate innate immunity in plants[J]. Cell Research, 2008, 18(12): 1190-1198.
[27]Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655.
[28]Zheng Z, Mosher S L, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology, 2007, 7: 2.
[29]Zheng Z, Qamar S A, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2006, 48(4): 592-605.
[30]Qiu J L, Zhou L, Yun B W, et al. Arabidopsis mitogenactivated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1[J]. Plant Physiology, 2008b, 148(1): 212-222.
[31]He P, Shan L, Lin N, et al. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity[J]. Cell, 2006, 125(3): 563-575.
[32]Keshavarzi M, Soylu S, Brown I, et al. Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. Vesicatoria[J]. Molecular PlantMicrobe Interactions, 2004, 17(7): 805-815.
[33]Mudgett M B. New insights to the function of phytopathogenic bacterial type III effectors in plants[J]. Annual Review Plant Biology, 2005, 56: 509-531.
[34]Lauge R, De Wit P J. Fungal avirulence genes: structure and possible functions[J]. Fungal Genetics and Biology, 1998, 24(3): 285-297.
[35]Kim H S, Desveaux D, Singer A U, et al. The Pseudomonas syringae effector AvrRpt2 cleaves its Cterminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proceeding of the National Academy of Sciences of the United States of America, 2005, 102(18): 6496-6501.
[36]Gohre V, Spallek T, Haweker H, et al. Plant patternrecognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Current Biology, 2008, 18: 1824-1832.
[37]Shao F, Golstein C, Ade J, et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector[J]. Science, 2003, 301:101-112.
[38]Xiang T, Zong N, Zou Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Current Biology, 2008, 18: 74-80.
[39]Zhang J, Li W, Xiang T, et al. Receptorlike cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7: 290-301.
[40]Zhang J, Shao F, Li Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMPinduced immunity in plants[J]. Cell Host & Microbe, 2007, 1(3): 175-185.
[41]Jelenska J, Yao N, Vinatzer B A, et al. Virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses[J]. Current Biology, 2007, 17: 499-508.
[42]Cui H, Wang Y, Xue L, et al. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cell Host Microbe, 2010, 7: 164-175.
[43]Chen Z, Agnew J L, Cohen J D, et al. Pseudomonas syringae type Ⅲ effector AvrRpt2 alters Arabidopsis thaliana auxin physiology[J]. Proceeding of the National Academy of Sciences of the United States of America, 2007, 104: 20131-20136.
[44]de TorresZabala M, Truman W, Bennett M H, et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease[J]. EMBO Journal, 2007, 26: 1434-1443.
[45]Goel A K, Lundberg D, Torres M A, et al. The Pseudomonas syringae type Ⅲ effector HopAM1 enhances virulence on waterstressed plants[J]. Molecular PlantMicrobe Interactions, 2008, 21: 361-370.
[46]Fu Z Q, Guo M, Jeong B R, et al. A type III effector ADPribosylates RNAbinding proteins and quells plant immunity[J]. Nature, 2007, 447: 284-288.
[47]Wang Y, Li J,Hou S, et al. A Pseudomonas syringae ADPRibosyltransferase inhibits Arabidopsis mitogenactivited protein kinase kinases[J]. The Plant Cell, 2010, 22: 2033-2044.
[48]Chisholm S T, Coaker G, Day B, et al. Hostmicrobe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
[49]Tameling W I, Elzinga S D, Darmin P S, et al. The tomato R gene products I2 and MI1 are functional ATP binding proteins with ATPase activity[J]. The Plant Cell, 2002, 14(11): 2929-2939.
[50]Meyers B C, Kozik A, Griego A, et al. Genomewide analysis of NBSLRRencoding genes in Arabidopsis[J]. The Plant Cell, 2003,15:809-834.
[51]Jones D, Thomas C, HammondKosack K, et al. Isolation of the tomato Cf9 gene for resistance to Cladosporium fulvum by transposon tagging[J]. Science,1994, 266(5186): 789-793.
[52]Shen Y, Ronald P. Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice[J]. Microbes and Infection, 2002, 4(13): 1361-1367.
[53]de Wit P J. Cf 9 and Avr 9, two major players in the geneforgene game[J]. Trends in Microbiology, 1995, 3(7): 251-252.
[54]Dodds P N, Lawrence G J, Catanzariti A M, et al. Direct protein interaction underlies geneforgene specificity and coevolution of the flax resistance genes and flax rust avirulence genes[J]. Proceeding of the National Academy of Sciences of the United States of America Proc Natl Acad Sci USA, 2006, 103(23): 8888-8893.
[55]Jia Y, McAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance[J]. EMBO Journal, 2000, 19(15): 4004-4014.
[56]Mackey D, Belkhadir Y, Alonso J M, et al. Arabidopsis RIN4 is a target of the type Ⅲ virulence effector AvrRpt2 and modulates RPS2mediated resistance[J]. Cell, 2003, 112(3): 379-389.
[57]Staskawicz B J, Mudgett M B, Dangl J L, et al. Common and contrasting themes of plant and animal diseases[J]. Science, 2001, 292(5525): 2285-2289.

Last Update: 2012-01-30