我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物根尖分生组织干细胞调控模式(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2012年04期
Page:
127-132
Column:
综合述评
publishdate:
2012-07-31

Article Info:/Info

Title:
The regulatory pattern of stem cell in root apical meristem
Author(s):
CHEN Jinhui WANG Pengkai ZHANG Yanjuan SHI Jisen*
Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
Keywords:
The root apical meristem establishing mark is the formation of quiescent center(QC)and the specialization of stem cell in the plant. There are four quiescent center cells in the center of root apical meristem with stem cells around them. Both auxin-de
Classification number :
Q948
DOI:
10.3969/j.jssn.1000-2006.2012.04.027
Document Code:
A
Abstract:
The root apical meristem establishing mark is the formation of quiescent center(QC)and the specialization of stem cell in the plant. There are four quiescent center cells in the center of root apical meristem with stem cells around them. Both auxin-dependent PLT pathway and auxin-independent SCR/SHR pathway together play an important role in the stabilization of quiescent center. There is a WOX5/ACR4/CLE40 feedback regulation between quiescent center cells and columella stem cells that is similar to the WUS/CLV3 in the stem apical meristem. The balance between quiescent center cells and columella stem cells is maintained by the WOX5/ACR4/CLE40 feedback pathway. There may be some similar pathway between other types of stem cells and quiescent center cells. The signal of auxin, cytokinin, gibberellin and other phytohormone also play an important role in the root apical meristem. These signals and some kinds of gene constitute regulation networks that regulate the root meristem apical stem cell niche.

References

[1] Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004,119(1):109-120.
[2] Jiang K, Feldman L J. Regulation of root apical meristem development[J]. Annual Review of Cell and Developmental Biology, 2005,21:485-509.
[2] Clowes F. Origin of quiescence at the root pole of pea embryos[J]. Annals of Botany, 1978,42(5):1237.
[4] Ivanov V. Meristem as a self-renewing system: maintenance and cessation of cell proliferation(a review) [J]. Russian Journal of Plant Physiology, 2004,51(6):834-847.
[5] Laux T. The stem cell concept in plants: A matter of debate[J]. Cell, 2003,113(3):281-283.
[6] Baum S F, Dubrovsky J G, Rost T L. Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana(Brassicaceae)roots[J]. American Journal of Botany, 2002,89(6):908-920.
[7] Kidner C, Sundaresan V, Roberts K, et al. The Arabidopsis root confirms that position, not lineage, determines cell fate[J]. Planta, 2000,211(2):191-199.
[8] Sarkar A K, Luijten M, Miyashima S, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007,446(7137):811-814.
[9] Terpstra I, Heidstra R. Stem cells: The root of all cells[J]. Seminars in Cell & Developmental Biology, 2009,20(9):1089-1096.
[10] Robert Sablowski. The dynamic plant stem cell niches[J]. Current Opinion in Plant Biology, 2007,10:1-6.
[11] Stahl Y, Wink R H, Ingram G C, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009,19(11):909-914.
[12] Hobe M, Müller R, Grünewald M, et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis[J]. Development Genes and Evolution, 2003,213(8):371-381.
[13] Yvonne S, Rüdiger S. Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4?[J]. Plant Signaling & Behavior, 2009,4(7):634-636.
[14] Zhou W, Wei L, Xu J, et al. Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche[J]. The Plant Cell Online, 2010,22(11):3692-3709.
[15] Carlsbecker A, Lee J-Y, Roberts C J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010,465(7296):316-321.
[16] Perilli S, Di Mambro R, Sabatini S. Growth and development of the root apical meristem[J]. Current Opinion in Plant Biology, 2012,15(1):17-23.
[17] Sablowski R. Plant stem cell niches: from signalling to execution[J]. Current Opinion in Plant Biology, 2011,14(1):4-9.
[18] Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis[J]. Nature, 2008,453(7198):1094-1097.
[19] Grieneisen V A, Xu J, Marée A F M, et al. Auxin transport is sufficient to generate a maximum and gradient guiding root growth[J]. Nature, 2007,449(7165):1008-1013.
[20] Sena G, Wang X, Liu H Y, et al. Organ regeneration does not require a functional stem cell niche in plants[J]. Nature, 2009,457(7233):1150-1153.
[21] Ioio R D, Nakamura K, Moubayidin L, et al. A genetic framework for the control of cell division and differentiation in the root meristem[J]. Science, 2008,322(5906):1380.
[22] Scacchi E, Osmont K S, Beuchat J, et al. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX[J]. Development, 2009,136(12):2059-2067.
[23] Thomann A, Lechner E, Hansen M, et al. Arabidopsis CULLIN3 genes regulate primary root growth and patterning by ethylene-dependent and independent mechanisms[J]. PLoS Genetics, 2009,5(1):1-14.
[24] Stahl Y, Simon R. Plant primary meristems: shared functions and regulatory mechanisms[J]. Current Opinion in Plant Biology, 2010,13(1):53-58.

Last Update: 2012-07-07