我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物中的铵根及硝酸根转运蛋白研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2012年04期
Page:
133-139
Column:
综合述评
publishdate:
2012-07-31

Article Info:/Info

Title:
Research progress of ammonium and nitrate transporters in plants
Author(s):
LI Jing12 ZHANG Bingyu3 SU Xiaohua3* SHEN Yingbai12*
1.College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China; 2.Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing 100083, China; 3.Key Laboratory of
Keywords:
nitrogen ammonium transporter nitrate transporter
Classification number :
Q948
DOI:
10.3969/j.jssn.1000-2006.2012.04.028
Document Code:
A
Abstract:
Nitrogen(N)is the largest demanded nutrient and its availability act as a major factor that limits the growth and development of plants. Imbalance nitrogen supply will lead lower production and excessive fertilization will cause environmental damage. Ammonium and nitrate is the main source of nitrogen absorption and utilization. This paper analyzed the research progress of the transport proteins that absorb NH+4 and NO-3, and the related genes expression, regulation and function in plants. We should strengthen the identification and understanding of the related genes of nitrogen uptake in trees, especially the pathway of nitrogen signal transduction, the mechanism of nitrate and ammonium transportation and regulation in plants, the interaction between proteins and components, the research about temporal and spatial expression patterns and regulation modes.

References

[1] 吴巍,赵军.植物对氮素吸收利用的研究进展[J].中国农学通报,2010,26(13):75-78.
[2] 王宇通,邵新庆,黄欣颖,等.植物根系氮吸收过程的研究进展[J].草业科学,2010,27(7): 105-111.
[2] 骆媛嫒,柳参奎.植物中铵转运蛋白的研究进展[J].基因组学与应用生物学,2009,28(2): 373-379.
[4] 邓若磊,徐海荣,曹云飞,等.植物吸收铵态氮的分子生物学基础[J].植物营养与肥料学报, 2007,13(3):512-519.
[5] Miller A J, Fan X R, Shen Q R, et al. Amino acids and nitrate as signals for the regulation of nitrogen acquisition[J]. Journal of Experimental Botany,2008,59(1):111-119.
[6] 李少锋,苏晓华,张冰玉.林木基因克隆研究进展[J].植物学报,2011,46(1):79-107.
[7] 李新鹏,童依平.植物吸收转运无机氮的生理及分子机制[J].植物学通报,2007,24(6): 714-725.
[8] Gazzarrini S, Lejay L, Gojon A,et al.Three functional transporters for constitutive,diurnally regulated,and starvation-induced uptake of ammonium into Arabidopsis roots[J]. The Plant Cell,1999,11 (5):937-948.
[9] Loqué D, Wirén N V. Regulatory levels for the transport of ammonium in plant roots [J]. Journal of Experimental Botany,2004, 55(401):1293-1305.
[10] Salvemini F, Marini A, Riccio A,et al. Functional characteriz- ation of an ammonium transporter gene from Lotus japonicus[J]. Gene,2001, 270(1-2):237-243.
[11] Ludewig U, von Wiren N, Frommer W B. Uniport of NH+4 by the root hair plasma membrane ammonium transporter LeAMT1.1 [J]. Journal of Biological Chemistry, 2002,277:13548-13555.
[12] Couturier J, Montanini B, Martin F,et al. The expanded family of ammonium transporters in the perennial poplar plant[J]. New Phytologist,2007,174(1):137- 150.
[13] Wang M Y, Siddiqi M Y, Ruth T J, et al. Ammonium uptake by rice roots(II. Kinetics of 13NH+4 influx across the plasmalemma)[J]. Plant Physiology, 1993,103:1259- 1267.
[14] Kraiser T, Gras D E, Gutiérrez A G,et al. A holistic view of nitrogen acquisition in plants[J]. Journal of Experimental Botany,2011, 62(4):1455-1466.
[15] Pearson J N, Finnemann J, Schjoerring J K. Regulation of the high-affinity ammonium transporter (BnAMT1.2) in the leaves of Brassica napus by nitrogen status[J]. Plant Molecular Biology,2002,49:483- 490.
[16] D’Apuzzo E, Rogato A, Simon-Rosin U,et al. Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression [J]. Plant Physiology,2004, 134:1763-1774.
[17] Wiren V N, Gazzarrini S, Gojon A, et al. The molecular physiology of ammonium uptake and retrieval[J]. Current Opinion in Plant Biology,2000,3(3): 254-261.
[18] Sonoda Y,Ikeda A,Saiki, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1.1-1.3)in rice[J]. Plant and Cell Physiology,2003, 44(7):726-734.
[19] Tuskan G A, Difazio S, Jansson S,et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science, 2006,313:1596-1604.
[20] Rennenberg H, Wilhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology,2010,12 (2):275-291.
[21] Min X, Siddiqi M Y, Guy R D,et al. A comparative kinetic analysis of nitrate and ammonium influx in two early-successional tree species of temperate and boreal forest ecosystems [J]. Plant, Cell and Environment,2000,23(3): 321-328.
[22] Gaur V S, Singh U S, Gupta A K, et al. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes[J].Molecular Biology Reports, 2012,39(3):2233-2241.
[23] Selle A, Willmann M, Grunze N,et al. The high-affnity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis[J]. New Phytologist,2005,168(3): 697-706.
[24] Ehlting B, Dluzniewska P, Dietrich H,et al. Interaction of nitrogen nutrition and salinity in Grey poplar(Populus tremula×alba)[J]. Plant, Cell and Environment,2007,30(7):796-811.
[25] Engineer C B, Kranz R G. Reciprocal leaf and root expression of AtAMT1.1 and root architectural changes in response to nitrogen starvation[J]. Plant Physiology, 2007,143(1):236-250.
[26] Sohlenkamp C, Wood C C, Roeb G W, et al. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiology,2002,130(4):1788-1796.
[27] Mota M, Neto C B, Monteiro A A, et al. Preferential ammonium uptake during growth cycle and identification of ammonium transporter genes in young pear trees[J]. Journal of Plant Nutrition, 2011,34 (6):798-814.
[28] 李宝珍,范晓荣,徐国华.植物吸收利用铵态氮和硝态氮的分子调控[J].植物生理学通讯, 2009,45(1):80-88.
[29] Lejay L, Gansel X, Cerezo M, et al. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase[J]. Plant Cell,2003,15(9):2218- 2232.
[20] Howitt S M, Udvardi M K. Structure, function and regulation of ammonium transporters in plants[J]. Biochimica et Biophysica Acta-Biomembrances,2000,1465(1-2):152-170.
[21] 熊君,王海斌,方长旬,等.不同氮素供应下水稻酚类物质代谢关键酶基因差异表达[J].植物生理与分子生物学学 报,2007,33(5):387-394.
[22] Hachiya T, Noguchi K. Integrative response of plant mitochondrial electron transport chain to nitrogen source[J]. Plant cell reports,2011,30(2):195-204.
[23] 张韫,崔晓阳.白桦幼苗 NH+4/NO-3吸收特征的研究[J].北京林业大学 学报,2011,33(3):26 -30.
[24] Hoopen F T, Cuin T A, Pedas P,et al. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences[J]. Journal of Experimental Botany,2010,61(9):2303- 2315.
[25] Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface[J]. Trends in Plant Science,2006,11(6): 263-266.
[26] DesRochers A, van den Driessche R, Thomas B R. Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH[J]. Canadian Journal of Forest Research,2003,33(4):552- 560.
[27] 贾慧君.小叶杨吸收利用NH+4-N和NO-3-N的研究[J].山东林业科 技,1990,4(1):62-65.
[28] Scheible W R, Gonzalez-Fontes A, Lauerer M,et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. Plant Cell,1997,9(5):783-798.
[29] Zhang H, Forde B G. Regulation of Arabidopsis root development by nitrate availability[J]. Journal of Experimental Botany,2000,51(342):51-59.
[40] Orsel M, Chopin F, Leleu O,et al. Characterization of a two-component high-affnity nitrate uptake system in Arabidopsis Physiology and protein-protein interaction[J]. Plant Physiology, 2006,142:1304-1317.
[41] Fernandez E, Galvan A. Nitrate assimilation in Chlamydomonas[J]. Eukaryotic Cell,2008,7(4):555-559.
[42] 童依平,蔡超,刘全友,等.植物吸收硝态氮的分子生物学进展[J].植物营养与肥料学报,2004,10(4):433-440.
[43] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends Plant Science,1998, 3(10):389-395.
[44] Galvan A and Fernandez E. Eukaryotic nitrate and nitrite transporters[J]. Cellular and Molecular Life Sciences, 2001,58:225-233.
[45] Nakamura Y, Umemiya Y, Masuda K,et al. Molecular cloning and expression analysis of cDNAs encoding a putative Nrt2 nitrate transporter from peach[J]. Tree Physiology,2007,27(4): 503-510.
[46] Li W B, Wang Y, Okamoto M,et al. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affnity nitrate transporter gene cluster [J]. Plant Physiology,2007,143:425-433.
[47] Cai C, Wang J Y, Zhu Y G,et al. Gene structure and expression of the high-affinity nitrate transport system in rice roots[J]. Journal of Integrative Plant Biology,2008,50(4): 443-451.
[48] Wang R C, Xing X J, Wang Y,et al. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1[J]. American Society of Plant Biologists, 2009, 151(1):472-478.
[49] Lejay L, Tillard P, Lepetit M, et al. Molecular and functional regulation of two NO-3 uptake systems by N-and C-status of Arabidopsis plants[J]. Plant,1999,18(5): 509-519.
[50] Zhuo D, Okamoto M, Vidmar J J, et al. Regulation of a putative high-affinity nitrate transporter(Nrt2; 1At)in roots of Arabidopsis thaliana[J]. Plant,1999, 17(5):563-568.
[51] Faure-Rabasse S, Deunff E L, Laine P,et al. Effects of nitrate pulses on BnNRT1 and BnNRT2 genes: mRNA levels and nitrate influx rates in relation to the duration of N deprivation in Brassica napus L[J]. Journal of Experimental Botany, 2002,53(375):1711-1721.
[52] Trueman L J, Richardson A, Forde B G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans[J]. Gene,1996,175(1 -2):223-231.
[53] Amarasinghe B H, Bruxelles G L, Braddon M,et al. Regulation of Gm Nrt2 expression and nitrate transport activity in roots of soybean(Glycine max)[J]. Planta,1998, 206:44-52.
[54] Krapp A, Fraisier V, Scheible W R,et al. Expression studies of Nrt2.1Np, a putative high-affinity nitrate transporter: evidence for its role in nitrate uptake[J].Plant,1998,14(6): 723-731.
[55] Orsel M, Krapp A,Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis: structure and gene expression[J]. Plant Physiology,2002, 129(2):886-896.
[56] Chopin F, Orsel M, Dorbe M F,et al. The Arabidopsis ATNRT2.1 nitrate transporter controls nitrate content in seeds[J]. Plant Cell,2007,19(5): 1590-1602.
[57] Munos S, Cazettes C, Fizames C,et al. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter NRT2.1[J]. The Plant Cell,2004,16(9):2433-2447.
[58] 胡廷章,陈国平,胡宗利,等.植物根系对氮胁迫的形态学响应[J].生态学报,2010,30(1): 205-211.
[59] Vert G, Chory J. A toggle switch in plant nitrate uptake[J]. Cell,2009,138(6): 1064-1066.
[60] Reuveny Z, Dougall D K, Trinity P M. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells [J]. Proceedings of the National Academy of Sciences,1980, 77(11):6670-6672.
[61] Prosser I M, Purves J V, Saker L R, et al. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate[J]. Journal of Experimental Botany,2001,52(354): 113-121.
[62] Kim H, Hirai M Y, Hayashi H,et al. Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition[J]. Planta,1999,209: 282- 289.
[63] Wang R C, Okamoto M, Xing X J, et al. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1 000 rapidly responding genes and new linkages to glucose, trehalose-6- phosphate, iron, and sulfate metabolism[J]. Plant Physiology,2003, 132:556-567.
[64] Wiren V N, Klair S, Bansal S,et al. Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants [J]. Plant Physiology,1999,119(3): 1107-1114.
[65] Zhou S, Gao X, Wang C, et al. Identification of sugar signals controlling the nitrate uptake by rice roots using a noninvasive technique[J]. Journal of Biosciences,2009,64(9-10): 697-703.
[66] Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. The Plant Cell,2008,20(12):3289-3299.
[67] Li JY, Fu Y L, Pike S M,et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance [J]. The Plant Cell, 2010,22(5): 1633-1646.
[68] Popova O V, Dietz K J, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum[J]. Plant Molecular Biology, 2003,52:569-578.
[69] Little Y D, Rao H, Oliva S,et al. The putative high affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues [J]. Proceedings of the National Academy of Sciences,2005,102: 13693-13698.
[70] Remans T, Nacry P, Pervent M,et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology,2006, 140(3):909-921.
[71] Gan Y B, Zhou Z J, An L J,et al. A comparison between northern blotting and quantitative real-time PCR as a means of detecting the nutritional regulation of genes expressed in roots of Arabidopsis thaliana[J]. Agricultural Sciences in China,2011,10(3):335-342.
[72] Tian Q Y, Sun P, Zhang W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. The New Phytologist,2009, 184(4):918-931.
[73] Monachello D, Allot M, Oliva S,et al. Two anion transporters AtClCa and AtClCe fulfill interconnect-ting but not redundant roles in nitrate assimilation pathways[J]. The New Phytologist,2009,183(1):88-94.
[74] Takei K, Sakakibara H, Taniguchi M, et al. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator [J].Plant Cell Physiology,2001,42(1):85- 93.
[75] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development[J]. Trends Plant Science, 2006,11(9):440-448.
[76] Naoko O O, Wasaki J. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms[J]. Plant Cell Physiology,2010,51(8):1255-1264.

Last Update: 2012-07-07