我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

三峡库区防护林土壤有机碳的累积(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年02期
Page:
15-20
Column:
森林生态系统碳储量及碳密度研究专栏
publishdate:
2013-03-31

Article Info:/Info

Title:
Soil organic carbon sequestration in protection forest in Three Gorges reservoir area
Author(s):
HUANG Zhilin1TIAN Yaowu12XIAO Wenfa1*MA Deju3
1. State Forestry Administration Key Laboratory of Forest Ecology and Environment, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China;
2. College of Forestry, Henan University of Science and Technology, Luoyang 471003, China;
3. Forestry Bureau of Zigui County, Yichang 443600, China
Keywords:
Three Gorges reservoir area conversion of cropland to forest soil organic carbon(SOC)
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.2013.02.003
Document Code:
A
Abstract:
Land use change such as conversion of cropland to forest strongly affects the soil organic carbon(SOC)sequestration.The objective of this paper was to assess the dynamics mechanism of SOC sequestration in protection forest in Three Gorges reservoir area by means of organic matter fractionation and stable C isotopes(δ13C)technology. The soil of three land use patterns(LA. a permanent Pinus massoniana forestland, LB. a deciduous Sycamore maple forestland was planted on continuous maize field in 2002, LC. a continuous maize field)were sampled. Soil samples were separated into three aggregate size classes. And inter-vs.intra-aggregate particulate organic matter were isolated into eight soil aggregate fractionations by density method. All fractions were analyzed for their SOC content and δ13C. Results showed that long-term agricultural used land significantly decreased SOC content by 57.2%and 32.2% in the top 10 cm and in the ≥10-30 cm depth layer, respectively. But after 11 years afforestation, the total amount of soil C increased by 34.5% and 42.9% in the 0-10 cm and in the ≥10-30 cm depth layer, respectively. Forest-derived carbon(new C)contributed 48% and 52% to the total SOC storage in the afforested systems in the 0-10 cm and ≥10-30 cm depths, respectively. The stored SOC before 2002(old C)only lost by 9.2%in LB. Afforestation could significantly increase new SOC fixed and improve the old SOC physically protected.

References

[1] 陈朝,吕昌河,范兰,等.土地利用变化对土壤有机碳的影响研究进展[J].生态学报,2011,31(18):5358-5371. Chen C, Lü C H, Fan L, et al. Effects of land use change on soil organic carbon: a review[J]. Acta Ecologica Sinica, 2011,31(18):5358-5371.
[2] 周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216. Zhou G M, Liu E B, She G H. Summary of estimated methods on forest soil carbon pool[J]. Journal of Zhejiang Forestry College,2006,23(2):207-216.
[3] Six J,Callewaert P, Lenders S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal,2002,66(6):1981-1987.
[4] Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle processes[J]. Ecological Applications, 2000,10(2):412-422.
[5] Galdo I D, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes[J]. Global Change Biology, 2003, 9(8):1204-1213.
[6] 刘微,吕豪豪,陈英旭,等.稳定碳同位素技术在土壤-植物系统碳循环中的应用[J].应用生态学报,2008,19(3):674-680. Liu W, Lü H H, Chen Y H, et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system[J]. Chinese Journal of Applied Ecology,2008,19(3):674-680.
[7] 史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416. Shi J, Liu J Y, Gao Z Q, et al. A review on the influence of afforestation on soil carbon storage[J]. Chinese Journal of Ecology,2005,24(4):410-416.
[8] 涂成龙,刘丛强,武永锋. 马尾松林地与玉米地土壤有机碳的分异研究[J]. 生态环境, 2008, 17(1):261-267. Tu C L, Liu C Q, Wu Y F. Variance of soil organic carbon between masson pine soil profile and corn soil profile[J]. Ecology and Environment, 2008, 17(1):261-267.
[9] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986,50(8):627-633.
[10] Six J, Elliott E T, Paustian K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J]. Soil Science Society of America Journal, 1999, 63(6):1350-1358.
[11] 安婷婷,汪景宽,李双异,等. 施用有机肥对黑土团聚体有机碳的影响[J].应用生态学报,2008,19(2):369-373. An T T, Wang J K, Li S Y, et al. Effect of manure application on organic carbon in aggregates of black soil[J]. Chinese Journal of Applied Ecology,2008,19(2):369-373.
[12] 章明奎,郑顺安,王丽平. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J].中国农业科学,2007,40(8):1703-1711. Zhang M K, Zheng S A, Wang L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses[J]. Scientia Agricultura Sinica,2007,40(8):1703-1711.
[13] 中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
[14] 国家林业局. 森林生态系统长期定位观测方法体系[M]. 北京:中国林业出版社,2011.
[15] 檀文炳,王国安,韩家懋,等.长白山不同功能群植物碳同位素及其对水分利用效率的指示[J].科学通报,2009,54(3):1912-1916. Tan W B, Wang G A, Han J M, et al. δ13C and water-use efficiency indicated by δ13C of different plant functional groups on Changbai Mountains, northeast China[J]. Chinese Science Bulletin, 2009, 54(3):1912-1916.
[16] 刘贤赵,王国安,李嘉竹. 中国北方农牧交错带C3草本植物δ13C与温度的关系及其对水分利用效率的指示[J].生态学报, 2011,31(1): 123-136. Liu X Z, Wang G A, Li J Z. Relationship between temperature and δ13C values of C3 herbaceous plants and its implications of WUE in farming-pastoral zone in north China[J]. Acta Ecologica Sinica, 2011, 31(1): 123-136.
[17] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(8):503-507.
[18] 刘启明,王世杰,朴河春,等. 稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化[J]. 环境科学,2002,23(3): 75-78. Liu Q M, Wang S J, Piao H C, et al. Soil organic matter changes of turnover ecosystems traces by stable carbon isotopes[J]. Environmental Science, 2002, 23(3): 75-78.
[19] Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation [J]. Forest Ecology and Management, 2002, 168(3):241-257.
[20] Guo L B, Gifford R M. Soil carbon sequestration and land-use change:a meta analysis[J]. Global Change Biology, 2002, 8(1):345-360.
[21] Post W H, Kwon K C. Soil carbon sequestration and landuse change:processes and potential[J]. Global Change Biology, 2000, 6(2):317-327.
[22] Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land[J]. Forest Ecology and Managment, 2002, 169(8):137-147.
[23] Steinbeiss S, Temperton V M, Gleixner G. Mechanisms of soil carbon storage in experimental grasslands[J]. Biogeosciences Discuss, 2007, 4(5):3829-3862.
[24] Bird M I, Veenendaal E M, Lloyd J J. Soil carbon inventories and δ13C along a moisture gradient in Botswana [J]. Global Change Biology, 2004, 10(2):342-349.

Last Update: 2013-03-31