我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

银杏GbGGPS基因的克隆及序列分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年04期
Page:
8-12
Column:
研究论文
publishdate:
2013-07-15

Article Info:/Info

Title:
Cloning and characterization of the geranylgeranyl pyrophosphate synthase gene from Ginkgo biloba Linn
Article ID:
1000-2006(2013)04-0008-05
Author(s):
ZHANG Hongjuan TAN Biyue CAO Fuliang*
College of Forest Resource and Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
ginkgolides geranylgeranyl pyrophosphate synthase(GGPS) protein structure bioinformatics analysis
Classification number :
Q786
DOI:
10.3969/j.issn.1000-2006.2013.04.002
Document Code:
A
Abstract:
In this study, we cloned and characterized a geranylgeranyl pyrophosphate synthase(GGPS)gene from Ginkgo biloba Linn. The full-length cDNA sequence of GbGGPS was 1 641 bp containing an open reading frame(ORF)of 1 176 bp, which encoded a 391 amino acids with a predicted molecular mass of 42.51 ku and the theoretical isoelectric point(PI)of 5.98. GbGGPS was an intro-free gene, and its deduced polypeptide contained a chloroplast-targeting signal peptide of 79 amino acids in the N terminal. The secondary structure of GbGGPS was mainly composed of alpha helix and random coil. Comparative analysis showed that GbGGPS had a high similarity to other plant GGPS proteins, and contained all the five conserved domains and functional aspartate-rich motifs of the polyprenyl synthetase family. The homology-based structural modeling showed that GbGGPS has the typical structure of Menthax piperita GGPS. Phylogenetic tree revealed that GbGGPS, TcGGDS, PaGGDS5 and AgGGDS were assigned to the same clade.

References

[1] Lichtenthaler H K, Schwender J, Seemann M, et al. Carotenoid biosynthesis in green algae proceeds via a novel biosynthetic pathway[C]// Mathis P. Photosynthesis: from Light to Biosphere. Montpellier:Kluwer Academic Publishers, 1995.
[2] Gershenzon J, Kreis W. Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides, and steroid saponins [C]// Wink M. Biochemistny of plant secondary Metabohsm. Boca Rateon: CRC Press, 1999.
[3] Gershenzon1 J, Dudareva N. The function of terpene natural products in the natural world [J]. Nature Chemical Biology, 2007, 3: 408-414.
[4] 陈大华,叶和春,李国凤,等. 植物类异戊二烯代谢途径的分子生物学研究进展[J]. 植物学报, 2000, 42(6):551-558. Chen D H, Ye H C, Li G F, et al. Adances in molecular biology of plant isoprenoid metabolic pathway [J]. Act Batanica Sinica, 2000, 42(6):551-558.
[5] 占爱瑶,由香玲,詹亚光. 植物萜类化合物的生物合成及应用[J]. 生物技术通讯, 2010, 21(1):131-135. Zhan A Y, You X L, Zhan Y G. Biosynthetic pathway and applications of plant terpenoid isoprenoid [J]. Letters In Biotechnology, 2010, 21(1):131-135.
[6] 朱俊,许锋,廖咏玲,等. 银杏萜内酯调控研究进展[J]. 中国农学通报, 2007,23(7):301-305. Zhu J, Xu F, Liao Y L, et al. Research progress in regulation of ginkgolides [J]. Chinese Agricultural Science Bulletin, 2007, 23(7):301-305.
[7] Lange B M, Rujan T, Martin W, et al. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes [J]. Proceedings of the National Academy of Sciences, 2000, 97(24):13172-13177.
[8] Rodríguez-Concepción M,Boronat A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids: A metabolic milestone achieved through genomics [J]. Plant Physiology, 2002, 130(3):1079-1089.
[9] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: A web-based environment for protein structure homology modeling [J].Bioinformatics, 2006, 22(2):195-201.
[10] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server [J]. Nucleic Acids Research, 2003, 31(13):3381-3385.
[11] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739.
[12] 黄俊峰,段鹏,吴文言. 基于模板的蛋白质结构预测[J]. 生物物理学报, 2011, 27(1):28-37. Huang J F, Duan P, Wu W Y. Template-based protein structure prediction [J].Acta Biophysica Sinica,2011, 27(1):28-37.
[13] McGarvey D J, Croteau R. Terpenoid metabolism [J]. Plant Cell, 1995, 7(7):1015-1026.
[14] Newman J D, Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway [J]. Critical Reviews in Biochemistry and Molecular Biology, 1999, 34(2):95-106.
[15] Yu H, Tang H, Wang L, et al. Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16 [J]. Journal of Bacteriology, 2001, 193(19):541-542.
[16] Lichtenthaler H K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 47-65.
[17] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria,algae and higher plants [J]. Natural Product Reports, 1999, 16(5):565-574.
[18] 张雯. 银杏萜内酯代谢途径中关键酶基因的遗传转化研究[D]. 上海:复旦大学, 2008. Zhang W. Genetic transformation of the key genes in ginkgolides biosynthesis pathway[D]. Shanghai:Fudan University,2008.

Last Update: 2013-07-30