我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

洋葱伯克霍尔德氏菌及其在林木病害防治中的应用(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年04期
Page:
149-155
Column:
综合述评
publishdate:
2013-07-15

Article Info:/Info

Title:
Application and its prospect analysis for Burkholderia cepacia in forest disease control
Article ID:
1000-2006(2013)04-0149-07
Author(s):
YE Jianren REN Jiahong LI Hao WU Xiaoqin
Jiangsu Province Key Laboratory for Prevention and Management of Invasive Species, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Burkholderia cepacia forestry disease biological control
Classification number :
S763
DOI:
10.3969/j.issn.1000-2006.2013.04.028
Document Code:
A
Abstract:
Burkholderia cepacia complex(BCC)contains 17 closely related species,which are generally found in the environment particularly in association with plants. Some of them were exploited for biocontrol, bioremediation and plant growth promotion purposes. But some of BCC species are also dangerous opportunistic human pathogens. The paper briefly reviewed in its biology characteristics, genomovars and genomes, biocontrol mechanism, safety evaluation, application and prospect analysis. It is a key question to correctly distinguish non-virulence strains from BCC. We proposed eight key points associated with applications of BCC strain in Chinese forestry. All of these will provide newly information and explore a better strategy to take advantage of these strains for the forestry research.

References

[1] Payne G W, Vandamme P, Morgan S H, et al. Development of a recA gene-based identification approach for the entire Burkholderia genus [J]. Applied and Environmental Microbiology, 2005, 71(7):3917-3927.
[2] Vanlaere E, Baldwin A, Gevers D, et al. Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(1), 102-111.
[3] Agnoli K, Schwager S, Uehlinger S, et al. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid [J]. Molecular Microbiology, 2012, 83(2):362-378.
[4] Isles A, Maclusky I, Corey M, et al. Pseudomonas cepacia infection in cystic fibrosis:an emerging problem [J]. Journal of Pediatrics, 1983, 104(2):206-210.
[5] Govan J R W, Hughes J E, Vandamme P. Burkholderia cepacia:medical,taxonomic and ecological issues[J]. Journal of Medical Microbiology [J]. 1996, 45(6):395-407
[6] Holmes A, Govan J, Goldstein R. Agricultural use of Burkholderia(Pseudomonas)cepacia:A threat to human health [J]. Emerging infectious diseases, 1998, 4(2):221-227.
[7] 年华, 褚云卓, 赵敏, 等. 洋葱伯克霍尔德菌监测结果分析[J]. 临床检验杂志, 2000, 18(4):238-239. Nian H, Chu Y Z, Zhao M, et al. Analysis and monitoring results of Burkholderia cepacia [J]. Chinese Journal of Clinical Laboratory Science, 2000, 18(4):238-239.
[8] Agodi A, Mahenthiralingam E, Barchitta M, et al. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis:prevalence, epidemiology, and genomovar status [J]. Journal of Clinical Microbiology, 2001, 39(8):2891-2896
[9] Juhasz A L, Britz M L, Stanley G A. Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h] anthracene by Burkholderia cepacia [J]. Journal of Applied Microbiology, 1997,83(2):189-198.
[10] Coenye T, Vandamme P. Diversity and significance of Burkholderia species occupying diverse ecological niches [J]. Environmental Microbiology, 2003, 5(9):719-729.
[11] Chiarini L, Bevivino A, Dalmastri C, et al. Burkholderia cepacia complex species:health hazards and biotechnological potential [J]. Trends in Microbiology, 2006, 14(6):277-286.
[12] 罗远婵, 谢关林. 洋葱伯克氏细菌是我们的敌人还是朋友[J]. 微生物学报, 2005, 45(4):647-652. Luo Y C, Xie G L. Burkholderia cepacia:our enemy or friend[J]. Acta Microbiologica Sinica, 2005, 45(4):647-652.
[13] 张军民, 罗燕萍, 赵莉萍, 等. 临床分离洋葱伯克霍尔德菌鉴定方法的探讨 [J]. 中华检验医学杂志, 2002, 25(6):333-335. Zhang J M, Luo Y P, Zhao L P, et al. A identification method for clinial Burkholderia cepacia isolates[J]. Chinese Journal of Laboratory Medicine, 2002, 25(6):333-335.
[14] Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex:past, present and future [J]. Systematic and Applied Microbiology. 2011, 34(2):87-95.
[15] Coenye T, Mahenthiralingam E, Henry D, et al. Burkholderia ambifaria sp. nov, a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis related isolates [J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(4):1481-1490.
[16] Vandamme P, Holmes B, Vancanneyt M, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov[J]. International Journal of Systematic Bacteriology, 1997, 47(4):1188-1200.
[17] LiPuma J J. Update on the Burkholderia cepacia complex [J]. Current Opinion in Pulmonary Medicine, 2005, 11(6):528-533.
[18] Mahenthiralingam E, Urban T A, Goldberg J B. The multifarious, multireplicon Burkholderia cepacia complex [J]. Nature Reviews Microbiology, 2005, 3:144-156.
[19] Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis:epidemiology and molecular mechanisms of virulence [J]. Clinical Microbiology and Infection, 2010,16(7):821-830.
[20] Komatsu H, Imura Y, Ohori A, et al. Distribution and organization of auxotrophic genes on the multichromosomal genome of Burkholderia multivorans ATCC 17616 [J]. Journal of Bacteriology, 2003, 185(11):3333-3343.
[21] Egan E S, Fogel M A, Waldor M K. Divided genomes:negotiating the cell cycle in prokaryotes with multiple chromosomes [J]. Molecular Microbiology, 2005, 56(5):1129-1138.
[22] Holden M T, Seth-Smith H M, Crossman L C, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients [J]. Journal of Bacteriology, 2009, 191(1):261-277.
[23] Meijer A H, Spaink H P. Host-pathogen interactions made transparent with the zebrafish model [J]. Currrnt Drug Targets, 2011, 12(7):1000-1017.
[24] Weilharter A, Mitter B, Shin M V, et al. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN [J]. Journal of Bacteriology, 2011, 193(13):3383-3384.
[25] Guo W, Wang Y, Song C, et al. Complete genome of Pseudomonas mendocina NK-01, which synthesizes medium-chain-length polyhyd-roxyalkanoates and alginate oligosaccharide [J]. Journal of Bacteriology, 2011, 193(13):3413-3414.
[26] Banna N E,Winkelmann G. Pyrrolnitrin from Burkholderia cepacia:antibiotic activity against fungi and novel activities against streptomycetes [J]. Journal of Applied Microbiology, 1998, 85(1):69-78.
[27] Alison H, Govan J, Richard G. Could the agricultural use of Burkholderia cepacia pose a threat to human health [J] Emerging Infectious Diseases, 1998, 4(2):221-227.
[28] Upadhyay R, Visintin L, Jayaswal R. Environmental factor affecting antagonisms of Pseudomonas cepacia against Trichoderma viride [J]. Canadian Journal of Microbiology, 1991, 37(11):880-884.
[29] Meyers E, Bisacchi G S, Dean L, et al. Xylocandin:a new complex of antifungal peptide. I: Taxonomy, isolation and biological activity [J]. The Journal of Antibiotics, 1987, 40(11):1515-1519.
[30] Quan C S, Zheng W, Liu Q, et al. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani [J]. Biocontrol, 2006, 72(6):1276-284.
[31] Arima K,Imanaka I,Kousaka M,et al. Pyrrolnitrin a new antibiotic substance, produced by Pseudomonas[J]. Agricultural and Biological Chemistry, 1964, 28:575-576.
[32] Hill D S,Stein J I,Torkewitz N R,et al. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas flureseens and role of pyrrolnitrin synthesis in biological control of plant disease [J]. Applied and Environmental Microbiology, 1994, 60(1):78-85.
[33] Janisiewicz W, Roitman J. Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepecia [J]. Phytopathology, 1988, 78(12):1697-1700.
[34] Hwang J, Chilton W S, Benson D M. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia [J]. Biological control, 2002, 25(1):56-63.
[35] Garbeva P, Voesenek K, Elsas J D. Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments[J]. Soil Biology and Biochemistry, 2004, 36(9):1453-1463.
[36] Hammer P E, Hill D S, Lam S T, et al. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin[J]. Applied and Environmental Microbiology, 1997, 63(6):2147-2154.
[37] Kirner S, Hammer P E, Hill D S, et al. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens[J]. Journal of Bacteriology, 1998, 180(7):1939-1943.
[38] Pierson III L S, Thomashow. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84[J]. Molecular Plant-Microbe Interactions, 1992, 5(4):330-39.
[39] 任嘉红, 吴小芹, 刘辉, 等. 吡咯伯克霍尔德氏菌JK-SH007抗菌蛋白的分离纯化 [J]. 微生物学通报, 2010, 37(6):872-880. Ren J H, Wu X Q, Liu H, et al. Isolation and purification of antifungal protein from Burkholderia pyrrocinia JK-SH007[J]. Microbiology China, 2010, 37(6):872-880.
[40] Ren J H,Ye J R, Liu H, et al. Isolation and characterization of a new Burkholderia pyrrocinia strain JK-SH007 as a potential biocontrol agent [J]. World Journal of Microbiology and Biotechnology, 2011, 27(9):2203-2215.
[41] Bevivino A, Peggion V, Chiarini L, et al. Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations [J]. Research in Microbiology, 2005, 156(10):974-983.
[42] Clode F E, Kaufmann M E, Malnick H, et al. Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom [J]. Journal of Clinical Microbiology, 2000, 38(5):1763-1766.
[43] Mahenthiralingam E, Bischof J, Byrne S K, et al. DNA-based diagnostic approaches for the identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholdria multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovarsⅠand Ⅲ [J]. Journal of Clinical Microbiology, 2000, 38(9):3165-3173.
[44] Parke J L, Gurian-Scherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains [J]. Annual Review of Phytopathology, 2001,39(1):225-258.
[45] Laura S S, Suh S J, Sokol P A, et al. A simple alaflfa seedling infection model for Pseudomonas aeruginosa strains associated with cystie fibrosis shows AlgT(singta-22)and RhlR contribute to pathogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24):15699-15704.
[46] Rahme L G, Stevens E J, Wolfort S F, et al. Common virulence factors for bacterial pathogenicity in plants and animals [J]. Science, 1995, 268(30):1899-1902.
[47] Bernier S P, Silo-Suh L, Woods D E, et al. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence [J]. Infection and Immunity, 2003, 71(9):5306-5313.
[48] 张立新, 宋江华, 谢关林. 洋葱伯克氏菌基因型的鉴定及其在苜蓿模型上的毒力分析 [J]. 微生物学报, 2008, 48(11):1145-1450. Zhang L X, Song J G, Xie G L. Identification of the Burkholderia cepacia complex genomovars and their virulence in an alfalfa infection model[J]. Acta Microbiologica Sinica, 2008, 48(11):1145-1450.
[49] Vergunst A C, Meijer A H, Renshaw S A, et al. Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection [J]. Infection and Immunity, 2010, 78(4):1495-1508.
[50] Hebber K P, Martel M H, Teulin T. Suppression of pre-and postemergence damping-off in corn by Burkholderia cepacia [J]. European Journal of Plant Pathology, 1998, 104(1):29-36.
[51] Szczech M, Shoda M. Biocontrol of Rhizoctonia damping-off of tomato by Bacillus subtilis combined with Burkholderia cepacia[J]. Journal of Phytopathology-phytopathologische Zeitschrift, 2004, 152(10):549-556.
[52] Singh R K, Mishra R P N, Jaiswal H K, et al. Isolation and identification of natural endophytic rhizobia from rice(Oryza sativa L.)through rDNA PCR-RFLP and sequence analysis [J]. Current Microbiology, 2006, 52(5):345-349.
[53] 李纪顺,杨合同,陈凯,等. 伯克霍尔德氏菌B418的生物学特性[C]//中国植物病理学会2005年学术年会论文集. 保定,2005. Li J S, Yang H T, Chen K, et al. Biological characteristics of Burkholderia sp. B418[C]//Proceedings of the 2005 Annual Conference of the Chinese Society of Plant Pathology. Baoding, China. 2005.
[54] 谢关林, 金扬秀, 徐传雨, 等. 我国水稻纹枯病拮抗细菌种类研究 [J]. 中国生物防治,2003, 19(4):166-170. Xie G L, Jin Y X, Xu C Y, et al. Bacterial antagonists of rice sheath blight disease in China[J]. Chinese Journal of Biological Control, 2003, 19(4):166-170.
[55] 于晓庆, 郗丽君, 刘永光,等. 洋葱伯克霍尔德氏菌株Lyc2的鉴定及对棉苗的防病促生作用 [J]. 植物病理学报,2007, 37(4):426-432. Yu X Q, Xi L J, Liu Y G, et al.Physio-biochemical characterization and molecular identification of Burkholderia cepacia isolate Lyc2 as a PGPR to cotton seedlings[J]. Acta Phytopathologica Sinica, 2007, 37(4):426-432.
[56] 谭小艳, 黄思良, 任建国, 等. 柑桔溃疡病内生拮抗细菌Bc51的研究 [J]. 植物病理学报, 2007, 7(1):9-17. Tan X Y, Huang S L, Ren J G, et al. Characterization of an endophytic bacterium strain Bc51 suppressing citrus canker[J]. Acta Phytopathologica Sinica, 2007, 7(1):9-17.
[57] 牟志美, 路国兵, 冀宪领,等. 桑树内生拮抗细菌Burkholderia cepacia Lu10-1的分离鉴定及其内生定殖 [J]. 微生物学报, 2008, 48(5):623-630. Mou Z M, Lu G B, Ji X L, et al. Identification and colonization of an antagonistic endophytic Burkholderia cepacia Lu10-1 isolated from mulberry[J]. Acta Microbiologica Sinica, 2008,48(5):623-630.
[58] 王勋建, 蔡三山, 霍宪起, 等. 松苗根际生防菌的研究 [J]. 南京林业大学学报:自然科学版,2009, 33(6):151-154. Wang X J, Cai S S, Huo X Q, et al. Study on biocontrol bacteria strain of pine seedling rhizosphere[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2009, 33(6):151-154.

Last Update: 2013-07-30