我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

滇池湖滨带不同植被类型土壤碳、氮时空分布特征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年05期
Page:
55-59
Column:
研究论文
publishdate:
2013-09-30

Article Info:/Info

Title:
Spatiotemporal distributions of soil carbon and nitrogen under the four riparian zones in the Dianchi Lake
Article ID:
1000-2006(2013)05-0055-05
Author(s):
WANG Shaojun CAO Zilin LI Xiaoying LIAO Zhouyu HU Binghui NI Jie
Department of Environment Science and Engineering, Southwest Forestry University, Kunming 650224, China
Keywords:
riparian zone soil nitrogen soil organic carbon Dianchi Lake
Classification number :
S181;S714
DOI:
10.3969/j.issn.1000-2006.2013.05.011
Document Code:
A
Abstract:
Riparian zone, an important ecological ecotone between lake and terrestrial ecosystem, could effectively reduce and retain nutrient source. This study aimed to explore spatial and temporal distributions of soil organic carbon (SOC) and total nitrogen (TN) under four different riparian zones of Dianchi Lake in Kunming city. The results showed that:(1) Average SOC and TN in four different riparian types were ranked from high to low as Populus yunnanensis (294 g/kg, 2.0 mg/kg)>Taxodium ascendens (19.7 g/kg, 1.6 mg/kg)>Salix babylonica (15.9 g/kg, 0.8 mg/kg)>Cinnamomum camphora (10.8 g/kg, 0.5 mg/kg). (2) Spatiotemporal distributions of SOC and TN were different in four different riparian zones. No matter in the drought season or in the wet season, SOC and TN in the Populus yunnanensis, Taxodium ascendens and Cinnamomum camphora forested lands dropped along the soil layers deepen while there was an increase trend of SOC and TN in the Salix babylonica forested land. The influences of riparian vegetation types on soil SOC and TN were mainly in soil surface because SOC and TN in the Populus yunnanensis site were significantly higher than in the other three vegetation types in 0-10 cm but not in ≥20-30 cm soil layer. (3) TN in the riparian vegetation types had significantly positive correlation with SOC and soil water content. Therefore SOC and soil moisture were the important factors affecting the dynamics of soil nitrogen in the riparian zones of Dianchi Lake.

References

[1]冯育青,王邵军,阮宏华. 苏州太湖国家度假区湖滨湿地生态恢复的模式与对策研究[J].南京林业大学学报:自然科学版, 2009, 33 (5):126-130. Feng Y Q, Wang S J, Ruan H H, et al. Ecological restoration and strategy on a riparian zone at Taihu Lake in Suzhou city[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2009, 33 (5):126-130.
[2]Peter john W T, Correll D L. Nutrient dynamics in an agricultural watershed:Observations on the role of a riparian forest[J]. Ecology, 1984, 65(5):1466-1475.
[3]McClain M E, Elizabeth W B, Lisa D C, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems[J]. Ecosystems, 2003(6):301-312.
[4]Mayer P M, Reynolds S K, McCutchen M D, et al. Metaanalysis of nitrogen removal in riparian buffers[J]. Journal of Environmental Quality, 2007, 36:1172-1180.
[5]王莹,冯育青,阮宏华.太湖东岸湖滨带土壤微生物生物量碳及主要化学特性[J].南京林业大学学报:自然科学版, 2010,34 (4):13-16. Wang Y, Feng Y Q, Ruan H H, et al. Soil microbial biomass carbon and other major chemical properties in the east of Taihu riparian zone[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2010, 34(4):13-16.
[6]韩惠芳, 宁堂原, 李增嘉, 等. 保护性耕作和杂草管理对冬小麦农田土壤水分及有机碳的影响[J]. 应用生态学报, 2011, 22 (5):1183-1188. Han H F, Ning T Y, Li Z J, et al. Effects of conservation tillage and weed control on soil water and organic carbon contents in winter wheat field[J]. Chinese Journal of Applied Ecology, 2011, 22(5):1183-1188.
[7]Groffman P M, Crawford M K. Denitrification potential in urban riparian zones[J]. Journal of Environmental Quality, 2003, 32:1144-1149.
[8]Hernandez M E, Mitsch W J. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands[J]. Journal of Environmental Quality, 2007, 36:333-342.
[9]Cabezas A, Comon F A. Carbon and nitrogen accretion in the topsoil of the Middle Ebro River Floodplains (NE Spain):Implications for their ecological restoration[J]. Ecological Engineering, 2010, 36(5):640- 652.
[10]耿增超, 姜林, 李珊珊, 等. 祁连山中段土壤有机碳和氮素的剖面分布[J]. 应用生态学报, 2011, 22(3):665-672. Geng Z Z, Jiang L, Li S S, et al. Profile distribution of organic carbon and nitrogen in major soil types in the middle of Qilian Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(3):665-672.
[11]史利江,郑丽波,梅雪英,等.上海市不同土地利用方式下的土壤碳氮特征[J].应用生态学报,2010,21(9):2279-2287. Shi L J, Zhen L B, Mei X Y, et al. Characteristics of soil organic carbon and total nitrogen under different land use types in Shanghai[J]. Chinese Journal of Applied Ecology, 2010, 21(9):2279-2287.
[12]Soosaar K, Mander, Maddison M, et al. Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests[J]. Ecological Engineering, 2011, 37(1):40-53.
[13]王红梅;陈燕. 滇池近20 a富营养化变化趋势及原因分析[J].环境科学导刊, 2009, 28(3):57-60. Wang H M, Chen Y. Change trend of eutrophication of Dlanch Lake and reason analysis in recent 20 years[J]. Environmental Science Survey, 2009, 28(3):57-60.
[14]Lu J, Wang H B, Pan M, et al. Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China[J]. Ecological Engineering, 2012, 39:95-103.
[15]鲁如坤. 土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000.
[16]中国林业科学研究院.LY/T 1213—1999.森林土壤含水率的测定[S].北京:中国林业出版社,1999.
[17]王清奎, 汪思龙, 高洪, 等. 土地利用方式对土壤有机质的影响[J]. 生态学杂志, 2005, 24(4):360-363. Wang Q K, Wang S L, Gao H, et al. Influence of land use on soil organic matter[J]. Chinese Journal of Ecology, 2005, 24(4):360-363.
[18]张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003, 12(4):500-504. Zhang J B, Song C C. The sensitive evaluation indicators of effects of landuse change on soil carbon pool[J]. Ecology and Environment, 2003, 12(4):500-504.
[19]Pórez1 C A, Carmona M R, Farińa J M, et al. Effects of nitrate and labile carbon on denitrification of southern temperate forest soils[J]. Chilean Journal of Agricultural Research, 2010, 70:251-258.
[20]杨刚, 谢永宏, 陈心胜, 等. 退田还湖后洞庭湖区土壤颗粒组成和化学特性的变化[J]. 生态学报, 2009, 29(12):6392-6400. Yang G, Xie Y H, Chen X S, et al. Changes of soil particle composition and chemical characteristics after “returning farmland to lake” in the Dongting Lake area[J]. Acta Ecologica Sinica, 2009, 29(12):6392-6400.
[21]王莹, 阮宏华, 黄亮亮, 等. 围湖造田不同土地利用方式土壤活性有机碳的变化[J]. 生态学杂志, 2010, 29(4):741-748. Wang Y, Ruan H H, Huang L L, et al. Soil organic carbon of different land use types in a reclaimed land area of Taihu Lake[J]. Chinese Journal of Ecology, 2010, 29(4):741-748.
[22]张金屯. 全球气候变化对自然土壤碳、氮循环的影响[J]. 地理科学,1998, 18(5):463-471. Zhang J T. Effects of global climate change on natural soil carbon, C and N circulation of nature soil[J]. Scientia Geographica Sinica,1998,18(5):463-471.
[23]Dosskey M G. Toward quantifying water pollution abatement in response to installing buffers on crop land[J]. Ecological Engineering, 2001, 28(5):577-598.
[24]Mayer P M, Reynolds S K, McCutchen M D, et al. Metaanalysis of nitrogen removal in riparian buffers[J]. Journal of Environmental Quality, 2007, 36:1172-1180.
[25]白军红, 邓伟, 张玉霞. 莫莫格湿地土壤氮磷空间分布规律研究[J]. 水土保持学报, 2001, 15(4):79-81. Bai J H, Deng W, Zhang Y X. Spatial distribution of nitrogen and phosphorus in soil of Momoge Wetland[J]. Journal of Soil and Water Conservation, 2001, 15(4):79-81.
[26]MuozLeoz B, Antigüedad I, Garbisu C, et al. Nitrogen transformations and greenhouse gas emissions from a riparian wetland soil:An undisturbed soil column study[J]. Science of the Total Environment, 2011, 409(4):763- 770.

Last Update: 2013-09-30