我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物体细胞胚发生胚性潜势恢复的研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年06期
Page:
147-152
Column:
综合述评
publishdate:
2013-11-27

Article Info:/Info

Title:
Research progress on the reacquisition of embryogenic potentiality in plant somatic embryogenesis
Article ID:
1000-2006(2013)06-0147-06
Author(s):
ZHEN Yan CHEN Jinhui SHI Jisen*
Key Laboratory of Forest Genetics and Biotechnology Ministry of Education,Nanjing Forestry University,Nanjing 210037,China
Keywords:
callus embryogenic competence plant somatic embryogenesis
Classification number :
S722; Q948
DOI:
10.3969/j.issn.1000-2006.2013.06.029
Document Code:
A
Abstract:
lant somatic embryogenesis is the manifestation of cell totipotency. Somatic cell initiates embryo development under appropriate conditions. Although this phenomenon has been reported for more than fifty years, some details are not clear,such as mechanism of embryogenic reacquisition from mature explants, exogenous/endogenous factors how to regulate embryogenic reacquisition, the key molecular steps of embryogenic reacquisition, regulation of signal network during embryogenic reacquisition. Acquisition of embryogenic competence is an interesting scientific question. This article reviews inducible factors of embryogenic competence, physiological and biochemical markers of embryogenic competence and specific genes, miRNA regulation and proteins related to embryogenic competence.

References

[1] Hermann v Guttenberg. Kulturversuche mit isolierten Pflanzenzellen[J]. Planta, 1943, 33(4):576-588.
[2] Vogel G. How does a single somatic cell become a whole plant [J]. Science, 2005, 309(5731):86.
[3] Jimenez V M. Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones [J]. Revista Brasileira de Fisiologia Vegetal, 2001, 13(2):196-223.
[4] Wang X, Nolan K E, Irwanto R R,et al. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells [J]. Annals of Botany, 2011, 107(4):599-609.
[5] Cooke T J, Racusen R H,Cohen J D. The role of auxin in plant embryogenesis [J]. The Plant Cell, 1993, 5(11): 1494-1495.
[6] 张金凤,方升佐,尚旭兰,等.青钱柳幼胚愈伤组织的诱导[J].南京林业大学学报:自然科学版,2012,36(5):47-50. Zhang J F, Fang S Z, Shang X L,et al. Callus induction from young embryos of Cyclocarya paliurus[J]. Journal of Nanjing Forestry University:Natural Sciences Edition,2012,36(5):47-50.
[7] Sagare A P, Lee Y L, Lin T C, et al. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo(Fumariaceae)-a medicinal plant. [J]. Plant Science, 2000, 160(1): 139-147.
[8] Kuo C L, Sagare A P, Lo S F, et al. Abscisic acid promotes development of somatic embryos on converted somatic embryos of Corydalis yanhusuo(Fumariaceae)[J]. Journal of Plant Physiology, 2002, 159(4): 423-427.
[9] Jimenez V M. Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis [J]. Plant Growth Regulation, 2005, 47(2-3): 91-110.
[10] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants [J]. Critical Reviews in Plant Science, 2010, 29(1): 36-57.
[11] Matsubayashi Y. Recent progress in research on small post-translationally modified peptide signals in plants [J]. Genes to Cells, 2012, 17: 1-10.
[12] Zhang J, Mab H, Chen S, et al. Stress response proteins’ differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon—a proteomic approach [J]. Plant Science, 2009, 177(2): 103-113.
[13] Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis [J]. Molecular Biology Reports, 2010, 37(5): 2493-2507.
[14] Halperin W. Alternative morphogenetic events in cell suspensions [J]. American Journal of Botany, 1966, 53(5): 443-453.
[15] Jones T J, Rost T L. The developmental anatomy and ultrastructure of somatic embryos from rice(Oryza sativa L.)scutellum epithelial cells[J]. Botanical Gazette, 1989, 150(1): 41-49.
[16] Garrido D, Vicente O, Heberle-Bors E, et al. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum [J]. Protoplasma, 1995, 186(3-4): 220-230.
[17] Pedroso M C, Pais M S. Factors controlling somatic embryogenesis[J]. Plant Cell, Tissue and Organ Culture, 1995, 43(2): 147-154.
[18] De Jong A J, Schmidt E D,de Vries S C. Early events in higher-plant embryogenesis [J]. Plant Molecular Biology, 1993, 22(2): 367-377.
[19] Smith D L, Krikorian A D. pH control of carrot somatic embryogenesi[C]//Nijkamp H J J, van der Plas L H W, Van Aartrijk J. Progress in Plant Cellular and Molecular Biology. Netherlands: Kluwer Academic Publishers, 1990.
[20] Komamine A, Matsumoto M, Tsukahara M, et al., Mechanisms of somatic embryogenesis in cell cultures-physiology, biochemistry and molecular biology[C]// Nijkamp H J J, Van Derplo L H N, Van Aortrijk J. Progress in Plant Cellular and Molecular Biology.Netherlands: Kluwer Acad emic Publisher, 1990.
[21] Pasternak T P, Prinsen E, Ayaydin F, et al. The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa [J]. Plant Physiology, 2002, 129(4): 1807-1819.
[22] Fransz P F, Schel J H N. An ultrastructure study on the early development of Zea mays somatic embryos [J]. Canadian Journal of Botany, 1991, 69(4): 858-865.
[23] Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue [J]. Plant Cell Reports, 2006, 25(9): 887-895.
[24] De Jong A J, Hendriks T, Meijer E A, et al. Transient reduction in secreted 32 KD chitinase prevents somatic embryogenesis in the carrot(Daucus carota L)variant ts11 [J]. Developmental Genetics, 1995, 16(4): 332-343.
[25] van Hengel A J, Tadesse Z, Immerzeel P, et al. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis [J]. Plant Physiology, 2001, 125(4): 1880-1890.
[26] Karami O, Aghavaisi B, Mahmoudi Pour A. Molecular aspects of somatic-to-embryogenic transition in plants [J]. Journal Chemical Biology, 2009, 2(4): 177-190.
[27] 石雅丽, 张锐, 林芹,等. 植物体细胞胚胎发生受体类蛋白激酶的生物学功能 [J]. 遗传, 2012, 34(5): 669-673. Shi Y L, Zhang R, Lin Q, et al. Biological function of the somatic embryogenesis receptor-like kinases in plant[J]. Hereditas, 2012, 34(5): 669-673.
[28] 魏丕伟. 杂交鹅掌楸体细胞胚胎发生标志基因克隆及表达分析[D]. 南京:南京林业大学,2009. Wei P W. Isolation and expression analysis of the marker genes related to somatic embryogenesis of Liriodendron hybrids[D]. Nanjing:Nanjing Forestry University,2009.
[29] 高燕, 席梦利, 王桂凤,等. 马尾松体细胞胚胎发生相关基因PmSERK1 的克隆与表达分析 [J]. 分子植物育种, 2010, 8(1): 53-58. Gao Y,Xi M L,Wang G F,et al. Molecular characterization and expression analysis of PmSERKl during somatic embryogenesis in masson pine[J].Molecular Plant Breeding, 2010, 8(1): 53-58.
[30] Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis [J]. Plant Cell Tissue Organ Culture, 2007, 90(1): 1-8.
[31] Zhang B H, Pan X P, Cobb G P, et al. Plant microRNA: A small regulatory molecule with big impact [J]. Developmental Biology, 2006, 289(1): 3-16.
[32] Luo Y C, Zhou H, Li Y, et al. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development [J]. Febs Letters, 2006, 580(21): 5111-5116.
[33] Zhang S, Zhou J, Han S, et al. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochemical and Biophysical Research Communications, 2010, 398(3): 355-360.
[34] Li T, Chen J, Qiu S, et al. Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar [J]. Plos One, 2012, 7(8):e43451.
[35] Zhang J, Zhang S, Han S, et al. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis [J]. Planta, 236(2): 647-657.
[36] Chen C J, Liu Q, Zhang Y C, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus [J]. Rna Biology, 8(3): 538-547.
[37] Lyngved R, Renaut J, Hausman J F, et al. Embryo-specific proteins in Cyclamen persicum analyzed with 2-D DIGE [J]. Journal of Plant Growth Regulation, 2008, 27(4): 353-369.
[38] Nogueira F C S, Goncalves E F, Jereissati E S, et al. Proteome analysis of embryogenic cell suspensions of cowpea(Vigna unguiculata)[J]. Plant Cell Reports, 2007, 26(8): 1333-1343.
[39] Marsoni M, Bracale M, Espen L, et al. Proteomic analysis of somatic embryogenesis in Vitis vinifera [J]. Plant Cell Reports, 2008, 27(2): 347-356.
[40] Yin L, Tao Y, Zhao K, et al. Proteomic and transcriptomic analysis of rice mature seed-derived callus differentiation [J]. Proteomics, 2007, 7(5): 755-768.
[41] Kreuger M, Holst G J. Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. [J]. Planta, 1993, 189(2): 243-248.
[42] Egertsdotter U, Von Arnold S. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce(Picea abies)[J]. Physiologia Plantarum, 1995, 93(2): 334-345.
[43] Namasivayam P, Skepper J N, Hanke D. Distribution of arabinogalactan protein(AGP)epitopes on the anther-derived embryoid cultures of Brassica napus [J]. Pertanika Journal of Tropical Agricultural Science, 2010, 33(2): 303-313.
[44] Acosta-Garcia G, Vielle-Calzada J P. A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis [J]. Plant Cell, 2004, 16(10): 2614-2628.
[45] Caliskan M, Turet M,Cuming A C. Formation of wheat(Triticum aestivum L.)embryogenic callus involves peroxide-generating germin-like oxalate oxidase [J]. Planta, 2004, 219(1): 132-140.
[46] Domon J M, Dumas B, Laine E, et al. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer [J]. Plant physiology, 1995, 108(1): 141-148.
[47] Imin N, De Jong F, Mathesius U, et al. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts [J]. Proteomics, 2004, 4(7): 1883-1896.
[48] Imin N, Nizamidin M, Daniher D, et al. Proteomic analysis of somatic embryogenesis in Medicago truncatula: Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments [J]. Plant Physiology, 2005, 137(4): 1250-1260.
[49] Zhen Y, Zhao Z Z, Zheng R H, et al. Proteomic analysis of early seed development in Pinus massoniana L [J]. Plant Physiology and Biochemistry, 2012, 54: 97-104.
[50] Sterk P, Booij H, Schellekens G A, et al. Cell-specific expression of the carrot EP2 lipid transfer protein gene [J]. The Plant Cell, 1991, 3(9): 907-21.
[51] Thoma S, Hecht U, Kippers A, et al. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J]. Plant Physiology, 1994, 105(1): 35-45.
[52] Chugh A, Khurana P. Gene expression during somatic embryogenesis-recent advances [J]. Current Science, 2002, 83(6): 715-730.
[53] Tchorbadjieva M I, Kalmukova R I, Pantchev I Y, et al. Monoclonal antibody against a cell wall marker protein for embryogenic potential of Dactylis glomerata L. suspension cultures [J]. Planta, 2005, 222(5): 811-819.
[54] Rose R J, Mantiri F R, Kurdyukov S. The developmental biology of somatic embryogenesis[C]//Pua E C, Davey M R. Plant Developmental Biology: Biotechnology Perspectives. Berlin: Springer-Verlag, 2010.
[55] Fehér A. The initiation phase of somatic embryogenesis: what we know and what we don’t [J]. Acta Biologica Szegediensis, 2008, 52(1): 53-56.

Last Update: 2013-11-30