我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

杉木地理种源的EST-SSR分子标记变异研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年01期
Page:
1-8
Column:
专题报道
publishdate:
2014-02-16

Article Info:/Info

Title:
Variation of EST-SSR molecular markers among provenances of Chinese fir
Article ID:
1000-2006(2014)01-0001-08
Author(s):
XU Yang1CHEN Jinhui1 ZHAO Yaqi1 WANG Ying1 WANG Xinmin1 LIU Weidong1 SHI Jisen1*
1. Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education,Nanjing Forestry University, Nanjing 210037, China;
2. Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
3. National Genetic Improved Seeds Propagation Centre of Chinese Fir, Fujian Forest Farm, Shunchang 353112, China
Keywords:
Chinese fir provenance SSR geographical allelic variation evolution
Classification number :
S722; Q81
DOI:
10.3969/j.issn.1000-2006.2014.01.001
Document Code:
A
Abstract:
In order to detect the genetic variation of Chinese fir provenance, 42 Chinese fir provenance samples were selected for genetic diversity analysis based on EST-SSR makers. Experimental results showed that there was higher genetic polymorphism among Chinese fir provenance. Base on the 17 locus amplified by the 15 EST-SSR pair primers, a total of 52 polymorphic alleles with average of 3.058 8 alleles for per locus were found. The average PIC was 0.296 for each locus. Comparing to others makers, more genetic variation information could be detected by SSR. Except provenance No. 2 and provenance No. 16, the other 40 provenances could be classified into four groups, with genetic distance of 10 as threshold. Our results fit well with the formal research on Chinese fir seed zones map based on growth and adaptive traits.In this study, we also found that there were some SSR variations located in the coding area of functional genes responding to certain biological or non-biological stress. The authors suggested that the geographic variation of Chinese fir might be due to these allelic variations of genes or in other words, the adaptive variation and local fixation.

References

[1] 于永福. 杉科植物的分类学研究[J]. 植物研究, 1994, 14(4): 369-384. Yu Y F. Taxonomic studies on the family taxodiaceae[J]. Bulletin of Botanical Research, 1994, 14(4): 369-384.
[2] 于永福. 杉科植物的起源、演化及其分布[J]. 植物分类学报, 1995, 18(4): 362-389. Yu Y F. Origin evolution and distribution of the taxodiaceae[J]. Acta Phytotaxonomica Sinica, 1995, 18(4): 362-389.
[3] 于永福, 傅立国. 杉科植物的系统发育分析[J]. 植物分类学报, 1996, 19(2): 124-141. Yu Y F. Phylogenetic analysis of the familytaxodiaceae[J]. Acta Phytotaxonomica Sinica, 1996, 19(2): 124-141.
[4] 侯伯鑫. 我国杉木的起源及发展史[J].农业考古, 1996(1): 161-171. Hou B X. The origins and history of Chinese fir[J]. Agricultural Archaeology, 1996(1): 161-171.
[5] 施季森,叶志宏, 翁玉榛, 等. 杉木生长与材性联合遗传改良研究[J].南京林业大学学报, 1993, 17(1): 1-8. Shi J S, Ye Z H, Weng Y Z, et al. Research on the joint genetic improvement of growth and wood properties in chinese fir(Cunninghamia Lanceolata(Lamb.)Hook.)[J].Journal of Nanjing Forestry University,1993, 17(1): 1-8.
[6] 叶志宏,施季森, 杨荣才, 等. 杉木基因型与环境交互效应的AMMI模型分析[J]. 南京林业大学学报, 1993, 17(4): 15-21. Ye Z H, Shi J S, Yang R C, et al. Ammi adjustment for analysis of genotype-environment interaction for Chinese fir[J]. Journal of Nanjing Forestry University, 1993, 17(4): 15-21.
[7] 施季森.福建省杉木遗传改良现状与发展技术对策[J]. 福建林业科技, 1994,21(3): 28-31. Shi J S. The present situation of Chinese fir genetic improvement in Fujian province and the technical countermeasures of developing it[J]. Journal of Fujian Forestry Science and Technology, 1994,21(3): 28-31.
[8] 尤勇, 洪菊生, RAPD标记在杉木种源遗传变异上的应用[J]. 林业科学, 1998, 34(4): 34-40. You Y, Hong J S. Application of rapd marker to genetic variation of chinese fir provenances[J]. Scientia Silvae Sinicae, 1998, 34(4): 34-40.
[9] 陈由强, 叶冰莹, 朱锦懋,等. 杉木地理种源遗传变异的RAPD分析[J]. 应用与环境生物学报, 2001, 7(2): 130-133. Chen Y Q, Ye B Y, Zhu J M, et al. Analysis of genetic relationship among Chinese fir(Cunninghamia lanceolata Hook)provenances by RAPD[J]. Applied & Environmental Biology, 2001, 7(2): 130-133.
[10] 章敬人,王孜昌, 宋建平, 等. 杉木地理变异及优良种源选择[R].贵阳: 中国林学会林木遗传育种分会第三次全国代表大会暨第六次学术报告会, 1991.
[11] 陈伯望,洪菊生, 杉木种源胸径生长地理变异的趋势面分析[J]. 林业科学, 1995, 31(2): 110-115. Chen B W, Hong J S.Trend surface analysis on DBHdata of Chinese fir provenances[J]. Scientia Silvae Sinicae, 1995, 31(2): 110-115.
[12] 叶志宏, 施季森,何祯祥.杉木基因型遗传稳定性的空间模型分析[J]. 南京林业大学学报, 1996, 20(2): 2-5. Ye Z H, Shi J S, He Z X.Assessing genetic stability of Chinese fir genotypes using a spatial model[J].Journal of Nanjing Forestry University, 1996, 20(2): 2-5.
[13] 叶志宏, 施季森, 翁玉榛, 等. 杉木种源地理变异的影响因子及性状遗传、相关和选择[J]. 南京林业大学学报, 1991, 15(2): 7-10. Ye Z H, Shi J S, Weng Y Z, et al. Geographic variation and inheritance, correlation and selection of traits of provenances of Chinese fir[J]. Journal of Nanjing Forestry University,1991,15(2):7-10.
[14] 陈岳武, 施季森, 陈益泰,等. 杉木的遗传变异及育种程序[R].富阳:全国林木遗传育种第五次学术报告会, 1986.
[15] 施季森.迎接21世纪现代林木生物技术育种的挑战[J].南京林业大学学报, 2000, 24(1):1-6. Shi J S. The Challenges to Forestry Biotechnology and Tree Breedingin the 21st Century[J].Journal of Nanjing Forestry University, 2000, 24(1):1-6.
[16] 郑仁华, 施季森,福建省杉木良种繁育现状与对策[J]. 林业科技开发, 2004, 18(2): 3-7. Zheng R H, Shi J S. The present situation and the counter measures of Cunninghamia lanceolata breeding in Fujian province[J]. China Forestry Science and Technology, 2004, 18(2): 3-7.
[17] 郑仁华, 施季森. 福建杉木良种繁育现状与展望[R].南宁:第三届南方林木育种研讨会, 2006.
[18] 施季森, 林木生物技术育种未来10年若干科学问题展望[J]. 南京林业大学学报:自然科学版, 2012, 36(5): 1-13. Shi J S. Prospection on some topics of forest genetic improvement through modern biotechnology for the next-ten-years in China[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2012, 36(5): 1-13.
[19] 施季森, 叶志宏, 洪菊生,等.杉木遗传多态性与多基因位点遗传结构[J]. 南京林业大学学报, 1993,17(3): 9-15. Shi J S, Ye Z H, Hong J S, et al. Genetic diversity and multilocus structure in chinese fir(Cunninghamia lanceolata)[J].Journal of Nanjing Forestry University,1993,17(3):9-15.
[20] 杨玉玲, 马祥庆,张木清.不同地理种源杉木的分子多态性分析[J].热带亚热带植物学报, 2009(2): 183-189. Yang Y L, Ma X Q, Zhang M Q. Molecular polymorphism analysis of geographical provenance variation of Chinese fir[J]. Journal of tropical and subtropical plants, 2009(2): 183-189.
[21] Varshney R K, Graner A, Sorrells M E. Genic microsatellite markers in plants: features and applications[J]. Trends in Biotechnology, 2005, 23(1): 48-55.
[22] Noormohammadi Z, Hasheminejad-Ahangarani Farahani Y, Sheidai M, et al. Genetic diversity analysis in opal cotton hybrids based on SSR, ISSR, and RAPD markers[J]. Genetics and Molecular Research, 2013, 12(1): 256-269.
[23] Scloutier, Raja R, Niu Zhixia, et al., SSR-based linkage map offlax(Linum usitatissimum L.)and mapping of QTLs underlying fatty acid composition traits[J]. Molecular Breeding, 2011, 28(4): 437-451.
[24] 洪菊生,吴士侠.GB 8822.2—1988.中国林木种子区—杉木种子区[S].北京:国家技术监督局,1988.
[25] 徐阳, 陈金慧, 李亚, 等.杉木EST-SSR与基因组SSR引物开发[J].南京林业大学学报:自然科学版,2014,38(1):9-14 Xu Y, Chen J H, Li Y, et al. Development of EST-SSR and Genomic-SSR from Cunninghamia lanceolata(Lamb)Hook[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2014,38(1):9-14.
[26] Yeh F C, Boyle T. Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany, 1997,129: 57
[27] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28: 2731-2739.
[28] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89(3): 583-90.
[29] 彭镇华, 邢自琢. 大别山杉木主要自然类型的研究[J].安徽农学院学报, 1987(1): 35-44. Peng Z H, Xin Z Z. The main natural type of Chinese fir in Dabie mountain[J]. Journal of anhui agricultural, 1987(1): 35-44.
[30] 吴中伦. 林业区划工作的回顾与展望[J]. 农业区划, 1989(2): 31-32+14. Wu Z L. Retrospect and prospect of forestry regionalization[J]. Agricultural zoning, 1989(2): 31-32+14.
[31] 陈岳武,施季森.杉木遗传改良中的若干基本问题[J]. 南京林产工业学院学报, 1983,7(4):5-16. Chen Y W, Shi J S. Some fundamental problems in genetic improvement of Chinese fir[J]. Journal of Nanjing Forestry University,1983,7(4):5-16.
[32] 李林初. 杉科的染色体资料及在系统演化研究中的作用[J]. 广西植物, 1989(3): 233-241. Li L C. The role of chromosome information in system evolution of Taxodiaceae[J]. Guangxi Plants, 1989(3): 233-241.
[33] Nystedt B, Street N R, Wetterbom A, et al. The Norway spruce genome sequence and conifer genome evolution[J].Nature, 2013,497(7451):579-84.
[34] Tsumura Y, Uchiyama K, Moriguchi Y, et al. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica[J]. Heredity, 2012, 109(6): 349-360.
[35] Mine A, Hyodo K, Tajima Y, et al. Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus[J]. Journal of Virology, 2012, 86(22): 12091-12104.
[36] Nagano Y, Furuhashi H, Inaba T, et al. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences[J]. Nucleic Acids Research, 2001, 29(20): 4097-4105.
[37] Monika Kalde, Thomas S Nühse, Kim Findlay, et al. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(28): 11850-11855.
[38] King D G, Kashi Y. Indirect selection for mutability[J]. Heredity, 2007, 99(2): 123-124.
[39] King D G, Kashi Y. Heretical DNA Sequences[J]. Science, 2009, 326: 229-230.
[40] Birol, A Raymond, Shaun D, et al. Assembling t he 20 Gb white spruce(Picea glauca)genome from whole-genome shotgun sequencing data[J]. Bioinformatics, 2013, 29(12): 1492-1497.

Last Update: 2014-01-03