我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

杉木育种群体SSR分子标记遗传多样性分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年01期
Page:
21-26
Column:
专题报道
publishdate:
2014-02-16

Article Info:/Info

Title:
Genetic diversity among the germplasm collections of the Chinese fir in 1st breeding population upon SSR markers
Article ID:
1000-2006(2014)01-0021-06
Author(s):
OUYANG Lei12 CHEN Jinhui1* ZHENG Renhua2* XU Yang1 LIN Yufeng3 HUANG Jinhua3 YE Daiquan3 FANG Yanghui3 SHI Jisen1
1. Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University,Nanjing 210037, China;
2. Southern Mountain Timber Forest Cultivation Laboratory of the State Forestry Administration, Fujian Academy of Forestry, Fuzhou 350012, China;
3. National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang 353211, China
Keywords:
Cunninghamia lanceolata breeding populations SSR markers genetic diversity management
Classification number :
S722; Q81
DOI:
10.3969/j.issn.1000-2006.2014.01.004
Document Code:
A
Abstract:
It is the core strategy of multi-generation genetic improvement to maintain a reasonable genetic diversity and clear genetic background in breeding populations during the Chinese fir genetic improvement. The genetic materials, which were conserved in the Chinese national germplasm bank, were analyzed systematically by 52 pairs of SSR markers developed. The genetic diversity in the 1st breeding populations was evaluated based upon the molecular level of SSR markers. The results showed that there were 254 polymorphic SSR loci detected by 52 pairs of SSR primers, of which each SSR marker produced polymorphic loci alleles ranged from 2 to 8, and all sites observed number of alleles, numbers of effect alleles, observed heterozygosity, Nei’s gene diversity and Shannon information index were 4.88, 2.32, 0.43, 0.50 and 0.98, respectively. The five evaluation indices for the level of genetic diversity were consistent. Observed number of alleles, effectives numbers of alleles, observed heterozygosity, Nei’s gene diversity and Shannon information index were different among 52 pairs of SSR markers, and their coefficient of variation were 24.88%,44.75%,34.20%,34.89% and 33.59%, respectively. The average value of genetic identities was 0.693 3 among 93 samples, ranged from 0.490 0 to 0.919 3; the average value of genetic distance was 0.370 3, ranged from 0.086 3 to 0.713 4. And according to the UPGMA cluster analysis, the 93 samples could be obviously divided into five main groups based on genetic distance(D=20), When the genetic distance value was set at 15(D=15), the fifth group(including 77 germplasm)could be divided into 16 sub-groups. UPGMA clustering results indicated that most of the collections could be grouped upon their original geographic sites to be selected; even those relationships between germplasm classification and geographic origin would be very complicated.

References

[1] Rafalski J A,Vogel J M. Generating and using DNA markers in plants[C]//Birren B,Lai E.Nonmammalian Genomic Analysis:A Practical Guide.San Diego:Academic Press,1996.
[2] Tuatz D.Hyper variability of simple sequences as a general source of polymorphisms DNA markers [J].Nucleic Acids Res,1989,17:6463-6471.
[3] Valdes A M,Slatkin M,Freimer N B.Allele frequencies at microsatellite loci:the stepwise mutation model revisited[J].Genetics,1993,133:737-749.
[4] Kruglya K S,Durrettr T,Schug M D,et al.Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and points mutations[J].Proc Natl Acad Sci,1998,95:1074-1078.
[5] 陈伯望,洪菊生,施行博.杉木和秃杉群体的叶绿体微卫星分析[J].林业科学,2000,36(3):46-51.Cheng B W,Hong J S,Shi X B.Study on genetic diversity of Cunninghamia lanceolata and Taiwania flousiana by using chloroplast microsatellites[J].Scientia Silvae Sinicae,2000,36(3):46-51.
[6] Catherine M C I,Thomas R W, David M M.Genetic discontinuity reveal by chloroplast microsatellite in eastern north American abies(Pinaceae)[J].American Journal of Botany,2000,87:774-782.
[7] 黄秦军,苏晓华,张香华.SSR分子标记与林木遗传育种[J].世界林业研究,2002,15(3):14-20.Huang C J,Su X H,Zhang X H.SSR molecular markers and tree breeding[J].World Forestry Research,2002,15(3):14-20.
[8] Byrne M,Marques-Garcia M I.Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus[J].Theo Appl Genet,1998,97:816-827.
[9] 徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用[J].西北植物学报,2002,122(3):714-722.Xu L,Zhao G F.Microsatellite DNA marker and its application in genetic diversity research[J].Acta Botanica Boreali-occidentalia Sinica,2002,122(3):714-722.
[10] 王小国,梁红艳,张薇.82份春小麦种质资源遗传多样性的SSR分析[J].西北农业学报,2013,22(1):34-40.Wang X G,Liang H Y,Zhang W.Analysis of genetic diversity of 82 spring wheat cultivars using SSR[J].Acta Agriculture Boreali-occidentalis Sinica,2013,22(1):34-40.
[11] 牛素贞,刘玉倩,杨锦标,等.贵州茶树地方品种的EST-SSR遗传多样性分析[J].浙江农业学报,2012,24(5):836-841.Niu S Z,Liu Y Q,Yang J B,et al.Analysis of genetic diversity of tea landrace resources in Guizhou by EST-SSR markers[J]. Acta Agriculture Zhejiang Genesis,2012,24(5):836-841.
[12] 杨丽芳,王芝学,梁海永.利用SSR技术对部分核桃品种(系)亲缘关系分析研究[J].安徽农业科学,2013,41(1):49-51.Yang L F,Wang Z X,Liang H Y.Research on phylogenetic relationship of part of walnut varieties(strain)by SSR technique[J].Journal of Anhui Agricultural Sciences,2013,41(1):49-51.
[13] 曾斌,田嘉,李疆.新疆核桃8个天然群体遗传多样性的SSR评价[J].新疆农业科学,2012,49(12):2180-2188.Zeng B,Tian J,Li J.Analysis of genetic diversity of eight natural walnut populations by using SSR marker in Xinjiang, China[J].Xinjiang Agricultural Sciences,2012,49(12):2180-2188.
[14] 韩冬伟,刘春燕,胡振帮,等.利用SSR分析标记鉴定大豆育种中杂交真伪和后代系谱[J].东北农业大学学报,2012,43(10):91-95.Han D W,Liu C Y,Hu Z B,et al.Identification of true or pseudo hybrid and offspring pedigree in soybean breeding by SSR markers[J].Journal of Northeast Agricultural University,2012,43(10):91-95.
[15] 李梅,施季森,甘四明,等.杉木杂交亲本分子遗传变异与子代生长相关的研究[J].林业科学研究,2001,14(1):35-40.Li M,Shi J S,Gan S M,et al.Correlation between RAPD-based parental genetic distance and filial performance of Chinese fir[J].Forest Research,2001,14(1):35-40.
[16] 齐明.杉木远交亲本群体遗传多样性研究[J].植物研究,2008,23(8):299-303.Qi M.Genetic diversity of wide cross population of Cunninghamia lanceolata[J].Bulletin of Botanical Research,2008,23(8): 299-303.
[17] Nei M.Analysis of gene diversity in subdivided population[J].Proc Natl Acad Sci,1973,70(12):3321-3323.
[18] McDermott J M, McDonald B A. Gene flow in plant pathosystems[J]. Annual Review of Phytopathology, 1993, 31(1):353-373.
[19] James F Rohlf.NTSYSPC version 2.11.1986—2002[Z]. Biostatistics Inc,2001.
[20] 施季森,叶志宏,翁玉榛.杉木生长与材性联合遗传改良研究[J].南京林业大学学报,1993,17(1):1-8.Shi J S,Ye Z H,Weng Y Z.Research on the joint genetic improvement of growth and wood properties in Chinese fir [J].Journal of Nanjing Forestry University,1993,17(1):1-8.
[21] 罗建勋.云杉天然群体遗传多样性研究[D].北京:中国林业科学研究院,2004.Luo J X.Genetic diversity of spruce natural populations[D].Beijing:Chinese Academy of Forestry,2004.
[22] 谭小梅,周志春,金国庆,等.马尾松二代无性系种子园遗传多样性和交配系统分析[J].林业科学,2012,48(2):69-74.Tan X M,Zhou Z C,Jin G Q,et al.Genetic diversity and mating system analysis of Pinus massoniana in a second-generation clonal seed orchard[J].Scientia Silvae Sinicae,2012,48(2):69-74.
[23] 叶功富,罗美娟,林益明,等.短枝木麻黄地理种源遗传多样性的RAPD分析[J].厦门大学学报:自然科学版,2005,44(6):856-860.Ye G F,Luo M J,Lin Y M,et al.Analysis on genetic diversity of Casuarina equisetifolia provenances by RAPD[J].Journal of Xiamen University:Natural Science,2005,44(6):856-860.
[24] 谢运海.东北地区水曲柳地理种源遗传多样性分析及优良种源选择[D].哈尔滨:东北林业大学,2005.Xie Y H.Selection of superior provenances and analysis of Fraxinus mandshurica Rupr. geographical provenance genetic diversity in Northeast China [D].Harbin:Northeast Forestry University,2005.

Last Update: 2014-01-15