我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

紫丁香叶片发育过程中花色素苷含量与叶绿素荧光和激发能分配的关系(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年01期
Page:
59-64
Column:
研究论文
publishdate:
2014-02-16

Article Info:/Info

Title:
The relationship between leaf anthocyanin content and chlorophyll fluorescence, as well as excited energy distribution during leaf expansion of Syringa oblata Lindl.
Article ID:
1000-2006(2014)01-0059-06
Author(s):
TIAN Ye ZHANG Huihui ZHANG Xiuli WANG Juan QI Fei SUN Guangyu*
College of Life Science, Northeast Forestry University, Harbin 150040,China
Keywords:
Syringa oblata Lindl. anthocyanin chlorophyll fluorescence excitation energy
Classification number :
Q945.1
DOI:
10.3969/j.issn.1000-2006.2014.01.011
Document Code:
A
Abstract:
In this paper, effects of changes in anthayanin content on chlorophyll contents, chlorophyll fluorescence characteristics and excitation energy distribution in photosynthetic apparatus in leaves of Syringa oblata Lindl.during leaf expansion were investigated. The results showed that anthocyanin contents decreased and chlorophyll contents increased in leaves of S. oblata with the expansion of leaves. There was a significant negative relationship between anthocyanin content and chlorophyll content, and capability of light capture and utilization of leaves were strengthened gradually with the increasing of anthocyanin contents, but the maximal PSⅡ photochemical efficiency(Fv/Fm)had no significant change. During leaf expansion, leaf anthocyanin contents decreased, and the quantum yield of thermal dissipation in non-functional PSⅡ(ФNF)and the quantum yield of light-dependent and △pH-and xanthophyll-mediated regulated thermal dissipation(ФNPQ)decreased. This showed that the younger leaf age was, the more anthocyanin contents had. And not only energy proportion of trans-thylakoid pH gradient and xanthophyll-regulated thermal energy dissipation in young leaves were higher than in mature leaves, but also quantum yield of thermal dissipation assigned by light absorption of PSⅡ reaction center to non-functional PSⅡ was larger. The distribution mechanism of light energy significantly decreased the pressure of active PSⅡ response center in young leaves, therefore, anthocyanin can prevent young leaves form the destruction of excess light energy.

References

[1] 王石川, 高亦珂, 张秀海, 等. 植物花青素生物合成相关基因的研究及应用[J].植物研究, 2011, 31(5):633-640. Shi S C, Gao Y K, Zhang X H, et al. Progress on plant genes involved in biosynthetic pathway of anthocyanins[J]. Bulletin of Botanical Research, 2011, 31(5):633-640.
[2] 葛雨萱, 赵 阳,甘长青, 等. 不同光环境对黄栌光合特性及生长势和叶色的影响[J].中国农学通报, 2011, 27(19):19-22. Ge Y X, Zhao Y, Gan C Q, et al.The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop.[J]. Chinese Agricultural Science Bulletin, 2011, 27(19): 19-22.
[3] 姜卫兵, 庄 猛, 沈志军, 等. 不同季节红叶桃、紫叶李的光合特性研究[J]. 园艺学报, 2006, 33(3):577-582. Jiang W B, Zhuang M, Shen Z J, et al. Study on the photosynthetic characteristics of red-leaf peach and purple-leaf plum in different seasons[J]. Horticulturae Sinica, 2006, 33(3): 577-582.
[4] Mol J, Jenkins G, Schfer E, et al. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis[J]. Critical Reviews in Plant Sciences, 1996, 15:525-557.
[5] Jin S K, Byung H L, So H K, et al. Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn(Zea mays L.)leaf[J]. Journal of Plant Biology, 2006, 49(1): 16-25.
[6] Lindoo S J, Caldwell M M. Ultraviolet-B radiation-induced inhibition of leaf expansion and promotion of anthocyanin production[J]. Plant Physiology, 1978, 61(2):278-282.
[7] Mendez M, Jones D G, Manetas Y. Enhanced UV-B radiation under field conditions increases anthocyanin and reduces the risk of photoinhibition but does not affect growth in the carnivorous plant Pinguicula vulgaris[J]. New Phytologist, 1999, 144(2):275-282.
[8] Hamilton W D, Brown S P. Autumn tree colours as a handicap signal[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2001, 268(1475):1489-1493.
[9] Karageorgou P, Manetas Y. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light[J]. Tree Physiology, 2006, 26(5):613-621.
[10] Merzlyak M N, Chivkunova O B, Alexei A E, et al. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves[J]. Journal of Experimental Botany, 2008, 59(14): 3903-3911.
[11] 王良再, 胡彦波, 张会慧, 等. 植物叶片花青素的光破坏防御机制研究进展[J]. 应用生态学报, 2011, 23(3): 835-841. Wang L Z, Hu Y B, Zhang H H, et al. Photoprotective mechanisms of leaf anthocyanins: research progress[J]. Chinese Journal of Applied Ecology, 2011, 23(3): 835-841.
[12] 许大全, 张玉忠, 张荣铣. 植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4):237-243. Xu D Q, Zhang Y Z, Zhang R X. Photoinhibition of photosynthesis in plants[J]. Plant Physiology Communications, 1992,28(4): 237-243.
[13] 张会慧,张秀丽,许 楠, 等. 外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响[J].应用生态学报, 2011, 22(5): 1195-1200. Zhang H H, Zhang X L, Xu N, et al. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem Ⅱ under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1195-1200.
[14] Jordan D N, Smith W K. Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment[J]. Agricultural and Forest Meteorology,1994,71: 359-372.
[15] 王良桂, 张春霞, 彭方仁, 等. 干旱胁迫对几种楸树苗木叶片荧光特性的影响[J]. 南京林业大学学报:自然科学版, 2008, 32(6): 119-121. Wang L G, Zhang C X, Peng F R, et al. Effects of drought stress on the fluorescence characteristics of four type of Catalpa spp.[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2008, 32(6): 119-121.
[16] Krol M, Gray G R, Hurry V M, et al. Low temperature stress and photoperiod effect an increased tolerance to photoinhibition in Pinus banksiana seedlings[J]. Canadian Journal of Botany, 1995, 73(8):1119-1127.
[17] Close D C, Davies N W, Beadle C L. Temporal variation of tannins(galloylglucoses), flavonols and anthocyanins in leaves of Eucalyptus nitens seedlings: implications for light attenuation and antioxidant activities[J]. Australian Journal of Plant Physiology,2001, 28(4):269-278.
[18] 张会慧, 张秀丽, 李鑫, 等. NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响[J].应用生态学报, 2011, 23(3): 625-631. Zhang H H, Zhang X L, Li X, et al. Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings[J]. Chinese Journal of Applied Ecology, 2011, 23(3): 625-631.
[19] Linda C S. Environmental significance of anthocyanins in plant stress responses[J]. Photochemistry and Photobiology, 1999, 70(1): 1-9.
[20] Hughes N M, Smith W K. Attenuation of incident light in Galax urceolata(Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection[J]. American Journal of Botany, 2007, 94:784-790.
[21] 姚志刚, 王中生, 颜 超, 等. 濒危植物银缕梅幼苗对不同光强的光合响应[J]. 南京林业大学学报:自然科学版, 2010, 34(3):83-88. Yao Z G, Wang Z S, Yan C, et al. The photosynthesis response to different light intensity for the endangered plant Parrotia subaequalis[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2010, 34(3):83-88.
[22] Flexas J, Medrano H. Energy dissipation in C3 plants under drought[J]. Functional Plant Biology, 2002, 29(10):1209-1215.
[23] 张会慧, 张秀丽, 胡彦波, 等. 碱性盐胁迫对桑树幼苗叶片叶绿素荧光和激发能分配的影响[J]. 经济林研究, 2012, 30(1): 6-12. Zhang H H, Zhang X L, Hu Y B, et al. Effects of chlorophyll fluorescence characteristics and energy allocation pathways in leaves of mulberry seedlings under alkali salt stress[J]. Nonwood Forest Research, 2012, 30(1): 6-12.
[24] Hu Y B, Sun G Y, Wang X C. Induction characteristics and response of photosynthetic quantum conversion to changes in irradiance in mulberry plants[J]. Journal of Plant Physiology, 2007, 164(8):959-968.
[25] Hendrickson L, Furbank R T, Chow W S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence[J]. Photosynthesis Research, 2004, 82(1):73-81.
[26] Zhou Y H, Lam H M, Zhang J H. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice[J]. Journal of Experimental Botany, 2007, 58(5): 1207-1217.
[27] 王晶英, 敖红, 张杰, 等.植物生理生化实验技术与原理[M].哈尔滨: 东北林业大学出版社, 2003.
[28] Pirie A, Mullins M G. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and sbscisic acid[J]. Plant Physiology, 1976, 58(4):468-472.
[29] Olson J M. Photosynthesis in the Archean era[J]. Photosynthesis Research, 2006,88(2):109-117.
[30] Liakopoulos G, Nikolopoulos D, Klouvatou A, et al. The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine(Vitis vinifera)[J]. Annals of Botany, 2006, 98(1):257-265.
[31] 郭春爱, 刘 芳, 许晓明, 等. 水稻低叶绿素b突变体光系统Ⅱ的热稳定性[J]. 植物生理学通讯, 2006, 42(5):967-973. Guo C A, Liu F, Xu X M, et al. Chlorophyll-b deficientand photosynthesisin plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973.
[32] Gould K S. Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves[J]. Journal of Biomedicine and Biotechnology, 2004, 5:314-320.
[33] Lee D W, Lowry J B, Stone B C. Abaxial anthocyanin layer in leaves of tropical rainforest plants: enhancer of light capture in deep shade[J]. Biotropica, 1979, 11(1):70-77.

Last Update: 2014-01-15