我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

微晶纤维素ARGET ATRP接枝共聚制备PMMA和PMAA-Na的研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2014年01期
Page:
125-129
Column:
研究论文
publishdate:
2014-02-16

Article Info:/Info

Title:
Research on ARGET ATRP for grafting of microcrystalline cellulose to synthesize PMMA and PMAA-Na
Article ID:
1000-2006(2014)01-0125-05
Author(s):
ZHUANG Zhiliang WU Weibing GU Jun DAI Hongqi*
Jiangsu Province Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
Keywords:
ARGET ATRP microcrystalline cellulose controlled polymerization molecule weight distribution
Classification number :
TS102.6+1
DOI:
10.3969/j.issn.1000-2006.2014.01.022
Document Code:
A
Abstract:
This paper applies ARGET(activators regenerated by electron transfer)ATRP(atom transfer radical polymerization)to graft methyl methacrylate(MMA)and sodium methacrylate(MAA-Na)from microcrystalline cellulose, respectively. The grafted substrates were evaluated with FT-IR and SEM, suggesting that polymethylmethacrylate(PMMA)was successfully grafted from the surface of microcrystalline cellulose. The free polymer PMMA was characterized by GPC, showing that the molecular weight distribution was narrow(Mw/Mn=1.12)and sufficient control was achieved when grafting monomers from the cellulose substrates via ARGET ATRP. Furthermore, the influence of time on grafting microcrystalline cellulose with MAA-Na through ARGET ATRP was investigated. The results revealed that monomer conversion increased with the reaction time, corroborating that ARGET ATRP can get good control on the length of the side chains grafted from the substrates. The distribution and the length of polymer chains graftod from microcrgstalline celluloso can be well controlled by ARGET ATRP.

References

[1] Lynd L R, Weimer P J, Van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577.
[2] 宋杰, 侯永发. 微晶纤维素的性质与应用[J]. 纤维素科学与技术, 1995, 3(3): 1-10.Song J, Hou Y F. The properties and utilizations of microcrystalline[J]. Journal of Cellulose Science and Technology, 1995, 3(3): 1-10.
[3] Gohel M C, Jogani P D. A review of co-processed directly compressible excipients[J]. Journal of Pharmacy and Pharmaceutical Sciences, 2005, 8(1): 76-93.
[4] Bains D, Boutell S L, Newton J M. The influence of moisture content on the preparation of spherical granules of barium sulphate and microcrystalline cellulose[J]. International Journal of Pharmaceutics, 1991, 69(3): 233-237.
[5] Macritchie K A, Newton J M, Rowe R C. The evaluation of the rheological properties of lactose/microcrystalline cellulose and water mixtures by controlled stress rheometry and the relationship to the production of spherical pellets by extrusion/spheronization[J]. European Journal of Pharmaceutical Sciences, 2002, 17(1): 43-50.
[6] Podczeck F, Knight P. The evaluation of formulations for the preparation of pellets with high drug loading by extrusion/spheronization[J]. Pharmaceutical Development and Technology, 2006, 11(3): 263-274.
[7] Tan F Z, Cao Y F, Wang D Z. Preparation of high oil-absorbing materials by using modified microcrystalline cellulose[C]//Gao J. Advanced Materials Research. Switzerland: Trans Tech Publications, 2011.
[8] Khan F. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber[J]. Biomacromolecules, 2004, 5(3): 1078-1088.
[9] Khan F. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation[J]. Macromolecular Bioscience, 2005, 5(1): 78-89.
[10] Okieimen F E. Preparation, characterization, and properties of cellulose-polyacrylamide graft copolymers[J]. Journal of Applied Polymer Science, 2003, 89(4): 913-923.
[11] Gupta K C, Khandekar K. Graft copolymerization of acrylamide onto cellulose in presence of comonomer using ceric ammonium nitrate as initiator[J]. Journal of Applied Polymer Science, 2006, 101(4): 2546-2558.
[12] Gupta K C, Khandekar K. Temperature-responsive cellulose by ceric(IV)ion-initiated graft copolymerization of N-isopropylacrylamide[J]. Biomacromolecules, 2003, 4(3): 758-765.
[13] Teramoto Y, Ama S, Higeshiro T. Cellulose acetate-graft-poly(hydroxyalkanoate)s: Synthesis and dependence of the thermal properties on copolymer composition[J]. Macromolecular Chemistry and Physics, 2004, 205(14): 1904-1915.
[14] Hafrén J, Córdova A. Direct organocatalytic polymerization from cellulose fibers[J]. Macromolecular Rapid Communications, 2005, 26(2): 82-86.
[15] Daly W H, Evenson T S, Iacono S T. Recent developments in cellulose grafting chemistry utilizing barton ester intermediates and nitroxide mediation[J]. Macromolecular Symposia, 2001, 174(1): 155-164.
[16] Roy D, Guthrie J T, Perrier S. Graft polymerization: Grafting poly(styrene)from cellulose via reversible addition-fragmentation chain transfer(RAFT)polymerization[J]. Macromolecules, 2005, 38(25): 10363-10372.
[17] Perrier S, Takolpuckdee P, Westwood J,et al. Versatile chain transfer agents for reversible addition fragmentation chain transfer(RAFT)polymerization to synthesize functional polymeric architectures[J]. Macromolecules, 2004, 37(8): 2709-2717.
[18] Nyström D, Lindqvist J, Östmark E, et al. Superhydrophobic and self-cleaning bio-fiber Surfaces via ATRP and subsequent postfunctionalization[J]. Acs Applied Materials & Interfaces, 2009,1(4): 816-823.
[19] 王璟, 周雪松, 肖惠宁. ATRP 在纤维素基材上接枝共聚的应用[J]. 高分子通报, 2011(2): 92-101.Wang J, Zhou X S, Xiao H N. The application of ATRP in cellulose graft polymerization[J]. Polymer Bulletin, 2011(2): 92-101.
[20] 韩晶, 程发, 魏玉萍. 原子转移自由基聚合方法在纤维素及其衍生物改性方面的应用[J].高分子通报, 2010(1): 11-18.Han J, Chen F, Wei Y P. The application of atom transfer radical polymerization at the modification of cellulose and its derivatives[J]. Polymer Bulletin, 2010(1): 11-18.
[21] Carlmark A, Malmstr O E. Atom transfer radical polymerization from cellulose fibers at ambient temperature[J]. Journal of the American Chemical Society, 2002, 124(6): 900-901.
[22] Hansson S, Östmark E, Carlmark A,et al. ARGET ATRP for versatile grafting of cellulose using various monomers[J]. Acs Applied Materials & Interfaces, 2009, 1(11): 2651-2659.
[23] Wang J S, Matyjaszewski K. Controlled/ “living” radical polymerization: Atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615.
[24] Jakubowski W, Min K, Matyjaszewski K. Activators regenerated by electron transfer for atom transfer radical polymerization of styrene[J]. Macromolecules, 2006, 39(1): 39-45.
[25] 李强, 张丽芬, 柏良久, 等. 原子转移自由基聚合的最新研究进展[J]. 化学进展, 2010, 22(11): 2079-2088.Li Q, Zhang L F, Bo L J, et al. Atom transfer radical polymerization[J]. Progress in Chemistry, 2010, 22(11): 2079-2088.
[26] Von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces[J]. Journal of the American Chemical Society, 2001, 123(31): 7497-7505.
[27] Zheng Y Q, Deng S B, Li N, et al. Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu(Ⅱ)and Pb(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 192(3): 1401-1408.

Last Update: 2014-01-15